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o Fin Whale Occurrence (FWO, n = 2415): cetacean sightings (from marine mammal
observers during shipboard and aerial surveys) and e-tagged whales;
o Pseudo-absence data (n = 2415): generated through random selection of points from the

Models whole study area except from the occurrence localities of FWO:;

o Environmental Context (n = 10,000). geographic rasters of bathymetry (spatial
resolution of 1 arc-minute, from GEBCO), chlorophyll-a content and gradient (daily images
with spatial resolution 4.6 km from 2013 to 2018, from MODIS-Aqua);

o Knowledge base (FHO, n =10,000): feeding habitat maps from [2];

Cetacean Distribution Modeling (CDM)

e Use: prediction tool for conservation biogeography and environmental change forecasts
[1], with applications in ocean management, preservation of rare and/or endangered

species, measurement of climate change on species: e FHO (from [2]): this model provides a daily unitary index of the fin whale’s preferred feeding habitat based on the

distribution of horizontal chlorophyll-a gradients (orange histogram in Fig. 2) at the species’ locations. It follows the

e Principle: CDM models are driven by the idea that core biological activities of whales expert rule that “feeding habitat is mostly related to the occurrence of chlorophyll-a fronts that are detected by
are strongly related to combined biogeochemical/hydrodynamical covariates distributed satellite sensors of ocean colour’; ¢ Training, test and evaluation procedure
over the area; ) N — o FHO_* models for regression : 8000 maps for training / 2000 for validation / 2000 for

| | S | F=[(€C3 CBLyiim)AND(C < CHE iaz) = ”"dd f' o . | test:

* Method: inferring the spatial distribution (abundance or a presence index) of a cetacean AND(AC > gradCH Luin) AND(B > minB)) ( o | o *FWO_* models for binary classification : 1449 for training / 483 for validation / 483 for
species based on a matrix of ocean variables (e.g. temperature, chlorophyll-a) at a x(gradCH Lint X AC)OR(AC > gradCH Lint) T test, using balanced training and validation sets for the two classes (i.e. FWO and
given location and time period (see example on the right graph of Fig. 1). > E 2 pseudo-absence), but a test set built only with FWO. FHO * models are also used for this

Fig.2 : On top, equation of the FHO model stated as a logical / o R task by applying a threshold optimized during the validation phase;
. network. On the right, histograms and scattering plots used to o LaEE T o lterated 5-folds cross-validation have been performed, using as evaluation metrics the

PrOjeCt tech4whales estimale num Sfr'gﬂijL“degrggg“ﬁLf_“o model parameters (L., . S pixel-wise rmse for regression task and the number of missed events for the binary

T T S R wowwm e w W classification (only unbiased evaluation metrics with presence-only data).

e Long-term project objective: proposing a global multimodal observational framework e Results
for CDM (left graph of Fig. 1) that would be able to predict whale occurrence whatever o | | | | | o Regression on FHO: FHO MLP_SP achieves a rmse accuracy of 0.11 in reproducing the
its behavior (only feeding habitat currently, see right graph of Fig. 1); e FHO_MLP_SP: this first model is a simple Multi Layer Perceptron that performs a regression task to predict a unitary FHO maps, while FHO AECNN_IP24 is highly accurate, with a rmse below 0.02

single pixel (i.e. central pixel of 24x24 pixel patches) of FHO values. It consists of a simple stack of 2 fully

e Core ideas: using multimodal deep learning frameworks to leverage the potential of Big . o . . . L . . (illustrated in Fig. 9);
Ocean Data for CDM. connected layers with relu activations, each having 16 hidden units, and followed by a third single-unit layer with a > Prediction of FWO probability: unsurprisingly, FHO model has the worst performance in

sigmoid activation as FHO values are unitary. Mean-squared error (mse) is used as a loss function; oredicting FWO, with a number of missed events around 278 (over 483). This number is

considerably decreased by the FWO_MLP_SP and FHO-FWO_AECNN-MLP_1P24

FW Habitats (7-day cumulated composite) e FHO AECNN IP24: this model is a deep autoencoder-like convolutional network that performs a multiple : : : :
B e — O_ _ - _ _ P | T | P | P models, with respectively 101 and 93 missed events on average for central pixels.
Tl o regression task on a 24x24 pixel to predict FHO input patches. As detailed in Fig. 3, it consists of a stack of
o | - S alternated 2D convolutional layers (Conv2D) with relu activations and max pooling layers, as well as dropout Models Contral pixel, | Mediai Batoh 5 %5
| ot layers used for regularization and residual connections to favor multi-scale representations. Mean absolute error FH()Fg“ﬁ)P = ii Ei i‘;i i‘l’z Ei ilg
. B N & 23¢ 2 24. 3
| (mae) is used as a loss function; FHO_AECNN_IP24 249 (+ 34) 211 (< 46)
i image | Positon, 1D , | FWO_MLP_SP 101 (£ 14) 90 (£ 9)
n = reeane FHO-FWO_AECNN-MLP_IP24 | 93 (£ 21) 78 (£ 17)
e — = v M i e FWO_ MLP_SP: this model performs a binary classification task to predict a FWQO probability. It uses the exact
S e Tl 26w b o pebiet same MLP architecture as FHO_MLP_SP except that now binary cross-entropy is used as a loss function; Fig. 5: On the left, the graphs from left to right represent the original FHO map, the predicted one with FHO_AECNN_IP24 and the
: o L e pixel-wise rmse map. On the right, average number (and standard deviation) of missed events for the different models (over 483).
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Fig. 1: On the left, schematic view of a multimodal observational framework of whale occurrences. On the right, as a convolutional base pre-tralned on a FHO Gonvad 2 (convan) (Norie.. 2424, 18) 2320 convzd Alel1p]
example of a Feeding Habitat Occurrence (FHO) map for fin whales (Balaenoptera physalus) using [2]'s model. - - TP RGLBROLIN0R0 RXPOGEINZR) CNAnG: 12,720 101 8 fonv2a.2lenlel _ _ _
P 9 ( ) P ( P pay ) 9 regression task to perfOrm the blnary classification task dFonont_1 (DTOROUE) (None, 12, 12, 16) © max_pooling2d_1[8][0] ® A|though our FWO dataset has been mosﬂy Samp]ed in an area and time penod favorable for
. . conv2d_3 (Conv2D) (None, 12, 12, 32) 4640 dropout_1[0][0] . . . .
on FWO data. In this model, we first added a fully L I L NN R fin whale feeding behavior, the knowledge base from FHO model [2] alone performs poorly in
connected classifier on top of FHO_AECNN_IP24 after R WS S o n predicting no-learned FWO data, showing the weak generalization capacity of this rule-based
StUdy ObjeCtives flattening itS OUtpUt SeCOnd, We fine tuned the IaSt conv2d_5 (Conv2D) (None, 6, 6, 64) 18496 dropout_2[0][0] model;
COﬂVOlUtIOnaI bIOCk (ConVZD_g) Of FHO_CNNAE_IP24’ :::z::ir:\:Z::i:l (Conv2DTrans E:Z::: :,2,6:,[:4:)%2) i:jzj Z::ZEZ:ZEZjii . . . . . . . . .
_ | | | _ | i.e. jointly training the new added classifier and this S oot T T o TrameeeTaTE e We presented first results showing that data-driven deep representations with a joint training
e Exploring different data-driven learning schemes to capture generic environmental oncatenRte L (ConCatevate) (NGRE, 12, &2, ] B conv2d_ATaT[o] : . -

. . . . . block while freezing the other lavers dropout 3[0] (6] of FHO and FWO, and including larger contextual environmental data, could be a promising
pattemns _ revealing fin whale occurrence in the Mediterranean Sea during  the | Y= o o T T e avenue to learn more generalizing environmental patterns associated with whale occurrence;
feeding/foraging Season; conv2d_8 (Conv2D) (None, 12, 12, 32) 9248 conv2d_7[0][0] g g p )

conv2d_transpose_2 (Conv2DTrans (None, 24, 24, 16) 4624 conv2d_8[0][0]
o o , , HFORRRS-4 (RIGRSHE) (Wiig.. 24,2 161 8 sonv2d_Eranspose 2Ielle] e In a near future, we wish to integrate new modalities such as passive acoustics data and
e Quantifying performance of these models to predict fin whale occurrence data w.r.t the All models have been developed using Keras functional concatenate 2 (Concatenate)  (None, 24, 24, 32) 6 convad 2[aTTe] explore other network architectures to model temporal dynamics (e.g. RNN) for our tasks
Feeding Habitat Occurrence (FHO) model [2], considered both as a state-of-the-art APl and Tensorflow backend [3]. Adam optimizer has convad ® (Convab) —(None, 24, 24, 1) 289 concatenate 2[0][0] 2 '
. _ Total params: 123,169
baseline and as a knowledge base for model training. been used for all models. rrainable parans:' 123, 165
Fig. 3: Model summary of FHO_AECNN _|P24 [1] Franklin, J. (2010). Diversity and Distributions, 16, 321-330. [3] https://keras.io/ , https://www.tensorflow.org/
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