
Context 
Cetacean Distribution Modeling (CDM)

● Use: prediction tool for conservation biogeography and environmental change forecasts 
[1], with applications in ocean management, preservation of rare and/or endangered 
species, measurement of climate change on species;

● Principle: CDM models are driven by the idea that core biological activities of whales 
are strongly related to combined biogeochemical/hydrodynamical covariates distributed 
over the area;

● Method: inferring the spatial distribution (abundance or a presence index) of a cetacean 
species based on a matrix of ocean variables (e.g. temperature, chlorophyll-a) at a 
given location and time period (see example on the right graph of Fig. 1).

Project tech4whales
● Long-term project objective: proposing a global multimodal observational framework 

for CDM (left graph of Fig. 1) that would be able to predict whale occurrence whatever 
its behavior (only feeding habitat currently, see right graph of Fig. 1); 

● Core ideas: using multimodal deep learning frameworks to leverage the potential of Big 
Ocean Data for CDM. 

Study objectives
● Exploring different data-driven learning schemes to capture generic environmental 

patterns revealing fin whale occurrence in the Mediterranean Sea during the 
feeding/foraging season;

● Quantifying performance of these models to predict fin whale occurrence data w.r.t the 
Feeding Habitat Occurrence (FHO) model [2], considered both as a state-of-the-art 
baseline and as a knowledge base for model training.

Models
● FHO (from [2]): this model provides a daily unitary index of the fin whale’s preferred feeding habitat based on the 

distribution of horizontal chlorophyll-a gradients (orange histogram in Fig. 2) at the species’ locations. It follows the 
expert rule that “feeding habitat is mostly related to the occurrence of chlorophyll-a fronts that are detected by 
satellite sensors of ocean colour”;

● FHO_MLP_SP: this first model is a simple Multi Layer Perceptron that performs a regression task to predict a 
single pixel (i.e. central pixel of 24x24 pixel patches) of FHO values. It consists of a simple stack of 2 fully 
connected layers with relu activations, each having 16 hidden units, and followed by a third single-unit layer with a 
sigmoid activation as FHO values are unitary. Mean-squared error (mse) is used as a loss function;

● FHO_AECNN_IP24: this model is a deep autoencoder-like convolutional network that performs a multiple 
regression task on a 24x24 pixel to predict FHO input patches. As detailed in Fig. 3, it consists of a stack of 
alternated 2D convolutional layers (Conv2D) with relu activations and max pooling layers, as well as dropout 
layers used for regularization and residual connections to favor multi-scale representations. Mean absolute error 
(mae) is used as a loss function;

● FWO_MLP_SP: this model performs a binary classification task to predict a FWO probability. It uses the exact 
same MLP architecture as FHO_MLP_SP except that now binary cross-entropy is used as a loss function;
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Fig. 1: On the left, schematic view of a multimodal observational framework of whale occurrences. On the right, 
example of a Feeding Habitat Occurrence (FHO) map for fin whales (Balaenoptera physalus) using [2]’s model.

Fig.2 : On top, equation of the FHO model stated as a logical 
network. On the right, histograms and scattering plots used to 
estimate numerical values of the FHO model parameters (i.e., 
min and max of CHL and gradCHL). 

Experiments
● Data

○ Fin Whale Occurrence (FWO, n = 2415): cetacean sightings (from marine mammal 
observers during shipboard and aerial surveys) and e-tagged whales;

○ Pseudo-absence data (n = 2415): generated through random selection of points from the 
whole study area except from the occurrence localities of FWO;

○ Environmental Context (n = 10,000): geographic rasters of bathymetry (spatial 
resolution of 1 arc-minute, from GEBCO), chlorophyll-a content and gradient (daily images 
with spatial resolution 4.6 km from 2013 to 2018, from MODIS-Aqua);

○ Knowledge base (FHO, n = 10,000): feeding habitat maps from [2];

● Training, test and evaluation procedure
○ FHO_* models for regression : 8000 maps for training / 2000 for validation / 2000 for 

test;
○ *FWO_* models for binary classification : 1449 for training / 483 for validation / 483 for 

test, using balanced training and validation sets for the two classes (i.e. FWO and 
pseudo-absence), but a test set built only with FWO. FHO_* models are also used for this 
task by applying a threshold optimized during the validation phase;

○ Iterated 5-folds cross-validation have been performed, using as evaluation metrics the 
pixel-wise rmse for regression task and the number of missed events for the binary 
classification (only unbiased evaluation metrics with presence-only data).

● Results 
○ Regression on FHO: FHO_MLP_SP achieves a rmse accuracy of 0.11 in reproducing the 

unitary FHO maps, while FHO_AECNN_IP24 is highly accurate, with a rmse below 0.02 
(illustrated in Fig. 5);

○ Prediction of FWO probability: unsurprisingly, FHO model has the worst performance in 
predicting FWO, with a number of missed events around 278 (over 483). This number is 
considerably decreased by the FWO_MLP_SP and FHO-FWO_AECNN-MLP_IP24 
models, with respectively 101 and 93 missed events on average for central pixels.

Wrapping up
● Although our FWO dataset has been mostly sampled in an area and time period favorable for 

fin whale feeding behavior, the knowledge base from FHO model [2] alone performs poorly in 
predicting no-learned FWO data, showing the weak generalization capacity of this rule-based 
model;

● We presented first results showing that data-driven deep representations with a joint training 
of FHO and FWO, and including larger contextual environmental data, could be a promising 
avenue to learn more generalizing environmental patterns associated with whale occurrence;

● In a near future, we wish to integrate new modalities such as passive acoustics data and 
explore other network architectures to model temporal dynamics (e.g. RNN) for our tasks.
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Fig. 4: Geographical locations 
of fin whale occurrence data, 
represented as red dots.

Fig. 3: Model summary of FHO_AECNN_IP24

● FHO-FWO_AECNN-MLP_IP24: this model is a case of 
transfer learning where we used FHO_CNNAE_IP24 
as a convolutional base pre-trained on a FHO 
regression task to perform the binary classification task 
on FWO data. In this model, we first added a fully 
connected classifier on top of FHO_AECNN_IP24 after 
flattening its output. Second, we fine tuned the last 
convolutional block (conv2D_9) of FHO_CNNAE_IP24, 
i.e. jointly training the new added classifier and this 
block while freezing the other layers.

All models have been developed using Keras functional 
API and Tensorflow backend [3]. Adam optimizer has 
been used for all models.

Fig. 5: On the left, the graphs from left to right represent the original FHO map, the predicted one with FHO_AECNN_IP24 and the 
pixel-wise rmse map. On the right, average number (and standard deviation) of missed events for the different models (over 483).
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