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Context

Date: 2613-61-13 66:00

NO observation/simulation system to resolve all scales and
processes simultaneously

Requirement for stochastic representations to account for
imperfectly resolved processes


http://www.youtube.com/watch?v=YDRE3sTwN8w
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Scientific background: model-driven
vsS. data-driven frameworks

Model-driven paradigm Data-driven paradigm

Dynamical model Dynamical model

Training data

ODE solver
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Observation model Observation model
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Scientific workplan

Methodological challenges
Stochastic representations of geophysical flows

) 4
Model-driven Data-driven
framework (Ch. 1) framework (Ch. I1)

.

Application challenge
Simulation and reconstruction of upper ocean dynamics
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SEACS workplan & outreach L

Non-permanent resources: 7 PhD, 4 Eng. & postdocs

Animation & visiting scientists:

- 4 summer schools, 3 workshops, 1 national conference, 2
doctoral courses

- More than 40 short incoming Visits: eg, Prof. D. Giannakis (NYU), Prof.
S. Gotwald (Univ. Sydney),, Prof. S. Brunton (Univ. Washington)

Publications & awards:

« > 20 journal papers

« > 40 communications in int. conferences

- Best PhD SMAI/GAMNI 2018 (V. Resseqguier)
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Key scientific results

Advances on Advances on
model-driven approaches data-driven approaches
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Transport under location uncertainty
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Improved LES (wake flows, Green-Taylor, TBL, ...) PDE/ODE NN representation
Derivation of stochastic geophysical flows dynamics (eg, QG) 3_11, — kAu
_ ot
rate representation of errors
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geophysical flows

| Deterministic Nonperiodic Flow®
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phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily
unstable with respeet to small modifications, so that slightly differing initial states can evelve into consider-
ably different states, Sj'lﬂml with bounded nnlu‘lonl are shown to possess. bounded numerical solutions,
A simple system cellular is solved All of the solutions are
to be unstable, and almest all of them are nonperiodic.
The feasibility of very-long-range weather prediction is examined in the light of these results.

»duction Thus there are occasions when more than the statistics
of irregular flow are of very real concern.
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Analog forecasting ope- Conrlcbs |
rator & Data Assimilation

Key idea

Replacing the explicit vy

dynamic model by an
analog forecasting
operator

Plug-and-play
application to
stochastic filters
(e.g., EnKF, PF)

|

Previous spread Pure Dynamical Model Forecast spread
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« Local » Gaussian/Linear
state-dependent model fitted
using analogs

| Lguensat et al., 2017 i
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Analog forecasting ope- Cominldbs)

rator & Data Assimilation
Extension to 2D+t geophysical fields:

Advanced wide
swath technology

e.g., (Fablet et al., 2017,
Lopez Radcenco et al., 2019)



Towards learning white-Com‘”L@BlD))
boxes

PDE/ODE NN representation

Numerical integration schemes as ResNets
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NN

for ODEs/PDEs

Xy

An example: Residual RK4 Bilinear Network

[Fablet et a.I- 2018 ‘Iji{:—) :a(y{() —z(t))
WO 20) (0 - =) - yl0)

«
‘l_fi(r{_) = z(t)y(t) — Bz(t)

Lorenz-63 equations

F(t, Xy)

Noise-free training data
Forecasting time step toth  ty+t4h  t,+8h

Analog forecasting <106 0.002 0.005
Sparse regression <106 0.002 0.006
MLP <106 0.018 0.044

Bi-NN(4) <106 <106 <10°%

representations®emniabs |
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Learning from
observation data ?
Noisy and irregular

sampling

Scarce time

 Proposed AINN4-EM mode
—— Proposed VBRNN model Interferometer
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Partially-observed
system

Ouala et al., preprint
2019
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Leveraging effects

Supportlng grants and fellowships:
ESA postdoc fellowship (C. Gonzalez, 2016-2017)
SAD Region SeaStorm (W. Bauer)
Teralab grant (2016-2018)
Microsoft Al4Ocean grant (2018, GPU resources)
OSTST MANATEE (co-PI, R. Fablet, CNES, 2017-2020)

New Initiatives and partnerships:
Industrial partnerships: eg, ITGA, CSTB, OceanNext, e-odyn,..
Isblue theme « Observing Systems » (co-Pls B. Chapron, R. Fablet)
H2020 Eurosea (2020-) (PI: A. Franke, 2019-2023)
LEFE/MANU IA-OAC (PI. R. Fablet, 2019-2021)
ANR Melody (PI: R. Fablet, 2019-2023)
ERC Synergy STUOD (co-Pis: B. Chapron, E. Mémin, 2020-2025)

Joint INRIA team between INRIA Rennes, IMT Atlantique and
Ifremer under discussion ’
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