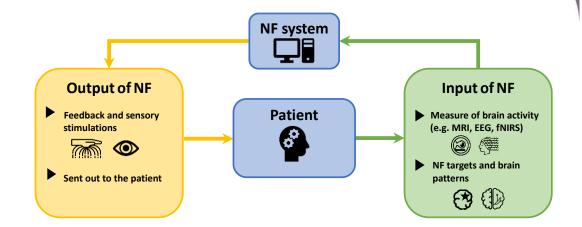


PEPERONI: Portable and Personalized Neurofeedback for Stroke Rehabilitation



Neurofeedback (NF)

- consists in presenting a subject with a stimulus directly related to his/her current brain activity
- can be used to teach subjects to regulate their own brain functions
- Previous studies showed that multimodal NF is promising for the treatment of various neuronal pathologies.

- New PhD, starting in Oct. 2022 funded at 75% by CominLabs, A.Lamouroux, in Brest.
- On existing data: assessing changes induced by NF training on brain networks organization
- identify novel NF (connectivity biomarkers).
- design personalized NF target estimation, adapted to each patient, based on its own brain anatomy and function
- Preliminary work during former CominLabs project Hemisfer
- Ongoing PhD in Empenn (C.Pinte, started in 2021), not funded by CominLabs
- Investigating long short-term memory (LSTM) and temporal convolutional neural networks (CNN)

PEPERONI project : 2022-2024

PERSONALIZED: adapted to patient profile

NF for PRECISION MEDICINE

2. MULTISENSORY NF OUTPUT

adapt the feedback (visual + haptic) to

the patient and the task to facilitate

neuromodulation

New NF Protocols

Proof of concept on stroke patients

High spatial (fNIRS) and temporal (EEG)

resolution with lighter solutions, more

adapted to clinical use

2. EEG + fNIRS

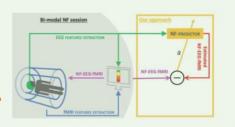
before NF training

after NF training

personalize NF marker
with connectivity
features

personalize NF marker
with connectivity
features

1. CONNECTIVITY NF INPUT


connectivity marker

Methodological development

EEG+fMRI datasets (N=60)

EEG-only, fMRI "enriched"

Learn a joint EEG-fMRI model to predict fMRI connectivity in EEG-only setting
 *ongoing PhD Thesis

<u>PORTABLE</u>: adapted to clinical practice

20-month postdoc, Hybrid-Empenn

- current systems: mostly visual feedback
- adapted feedback: reduce the time required to learn to control the system and their brain activity.
- adaptation depending on : personal characteristics of the user, evolution of his results

_ 20-mai

20-month postdoc, Empenn-CHU

fNIRS and fMRI measure the hemodynamic response

Open

Position

- Study impact of fNIRS for NF
- propose a new EEG-fNIRS NF

Electrophysiological Stimulus Neuronal Activity Activity Response FNIRS FMRI

Consortium

Empenn U1228 (Inria/Inserm/CNRS/UR1)

ultaneous EEG-fMRI Neurofeedback

- Julie Coloigner, CR CNRS
- Claire Cury, CR Inria
- Pierre Maurel, MCF UR1
- 2AI Team (Lab-STICC UMR CNRS / IMT Atlantique)
 - Nicolas Farrugia, MCF IMT
 - Giulia Lioi, MCF IMT
 - Vincent Gripon, PR IMT

- HYBRID Team (Inria/IRISA)
 - Anatole Lécuyer, DR Inria
 - Marc Macé, CR CNRS

Temporal resolution (s)

- Rehabilitation Dept. CHU Rennes
 - Isabelle Bonan, PU-PH

