
Context and objectives

State-of-the-art deep learning models are growing fast.

IRISA, TARAN
LS2N, OGRE
LIP, OKHAM

LeanAI: Dynamic 
Precision Training on 
the Edge

Custom precision activation 
function code generation

Our approach 

Accelerate training approaches jointly at the algorithmic
and arithmetic levels. Explore progressive and dynamic
precision training.

A dynamic precision trust 
region training algorithm

Context: need for learning acceleration mechanisms in
both cloud (for large-scale models) and on-site settings
(e.g. autonomous driving, healthcare, privacy).

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
100

102

104

106

108

1010

1012

1014

W
ei

gh
t

pa
ra

m
et

er
co

un
t

1943: First NN
(N ' 10)

1988: NetTalk
(N ' 2 · 104)

2009: Hinton’s
Deep Belief Net
(N ' 107)

2013: Google/Y!
(N ' 109)

2017: Very large
NNs (N ' 137 · 109)

2021: Extremely large
NNs (N ' 1.6 · 1012)

Objective: co-design a set of optimization algorithms
and tools for deployment/synthesis on existing and
custom HW.

Provide proof of concept HW implementations of the
ideas developed to showcase potential impact of our
results.

MPTorch: a custom precision training simulation framework 

Library/simulation support for low/mixed precision training is limited. We created a PyTorch-based extension for
low/mixed precision training (& inference) simulation.

MPTorchmixed precision simulation compute flow 

Supports floating-point and fixed-point arithmetic. Planned support for various number formats and rounding modes.

We are working on a trust region-based stochastic
gradient descent algorithm that dynamically changes
precision during training.

Initial results: ResNet-110 network trained on CIFAR-10
dataset; mixed precision training regime of 8-bit and 16-
bit floating-point arithmetic.

Explore precision switching for computing activation
functions during the forward and backward pass and
generate custom accelerated CUDA implementations.

Initial results: activation function code generator based
on Sollya and MetaLibm libraries; tests on GeLU-type
activation functions and comparison with PyTorch
implementation.
‣ need to optimize execution time


