Context and objectives

State-of-the-art deep learning models are growing fast.
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Context: need for learning acceleration mechanisms in
both cloud (for large-scale models) and on-site settings
(e.g. autonomous driving, healthcare, privacy).
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Objective: co-design a set of optimization algorithms
and tools for deployment/synthesis on existing and
custom HW.
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LeanAl: Dynamic

Precision Training on

the Edge

Accelerate training approaches jointly at the algorithmic
and arithmetic levels. Explore progressive and dynamic
precision training.
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LeanAl

Provide proof of concept HW implementations of the
ideas developed to showcase potential impact of our
results.

MPTorch: a custom precision training simulation framework

Library/simulation support for low/mixed precision training is limited. We created a PyTorch-based extension for

low/mixed precision training (& inference) simulation.

MPTorch mixed precision simulation compute flow
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= specify precision of operations & quantizers
at the finest granularity
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MAC quantization

Supports floating-point and fixed-point arithmetic. Planned support for various number formats and rounding modes.

IRISA, TARAN
LS2N, OGRE
LIP, OKHAM

A dynamic precision trust
region training algorithm

We are working on a trust region-based stochastic
gradient descent algorithm that dynamically changes
precision during training.

Initial results: ResNet-110 network trained on CIFAR-10
dataset; mixed precision training regime of 8-bit and 16-
bit floating-point arithmetic.

ResNet-110
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Custom precision activation

function code generation

Explore precision switching for computing activation
functions during the forward and backward pass and
generate custom accelerated CUDA implementations.

Initial results: activation function code generator based
on Sollya and Metalibm libraries; tests on GelU-type
activation functions and comparison with PyTorch
implementation.

» need to optimize execution time
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