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PAEG for non-experts Proposed Approach

Compute power inside the routers of the network-on-
chip, or inside the DRAM controller.
CGRA: Coarse Grained Reconfigurable Architecture
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Summary.

Holistic software/hardware model by integrating  Generalization of the concept of dataflow edges into
processing capabilities all along the path from the main  multi-input, multi-output components that are called

memory to the processor “passive blocks”. fieurabl d-level
Model of computation “Passive-Active Flow Graph” (PAFG) > Designer-specified memory management v/ Reconfigurable component at word-leve
optimization
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Firing of fork actor:

1. Read data from input FIFO inl and store it
in a temporary variable dl

2. Send data value in dl to output FIFO outl

3 - .
3. Send data value in dl to output FIFO out2 .ﬁ* Tradltl'o.n.al processing
% capabilities

A

Energy and time
consuming transfers

ﬁ Traditional processing

S capabilties Passivization of the fork actor: T
v~ No explicit data movement . capabilities
v~ Nofiring
Some key, figures lllustration of the approach
Squeezenet:

One addition:
3 memory accesses
> 1 operation

Deep neural network for computer vision, designed for small networks and lower number of parameters, while
achieving the same level of accuracy than bigger networks

PAFG after passivization transformation
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Reading o e Several megabytes as input
ort .
1 [ ]
weants T N Y T Few hundreds of kilobytes
————— Convolution ' maxPool
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----- v~ Good candidate for
passivization

Conventional dataflow

The total energy spent for
moving data has reached Direct PAFG

One adder: 1 cycle, few picoloules
One memory access: 400 cycles, 300 nanoloules
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62% of energy in mobile systems . b ook |
> 80% area of a chip dedicated to memory and data ____,___J L____ o e ’
movement

% Mapping to the new components
% Traditional Mapping
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Need to rewrite the application to follow a

producer-consumer data model
Data-stream processing

KPN model of computation, no energy study Chipset | [Tile
Near-Memory Computing (NMC)
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Software stack
In-Memory Computing (IMC) . .
. Mapping of passive actors
> Tool-chain .
in the network DRAM
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