

Agence Nationale de la Recherche

Pricless **Privacy-Conscious** Legally-Sound blockchain Storage

WIDE, Inria Rennes, IRISA, UR1 CIDRE, Inria Rennes, IRISA, UR1 GDD, LS2N, University of Nantes **IODE**, University of Rennes 1

OVERALL OBJECTIVES		
1-Leverage blockchains to provide legal and technical tools to automate and audit operations that access or exploit personal data.	2-provide providing legal and technical tools to addresses the challenges posed by distribution and cross-border exchanges	3-design an ecosystem of legal and technical tools that can support blockchain-based distributed storage applications, while satisfying privacy and legal requirements
WORKPACKAGES		
WP 1 - Harnessing Blockchain Assets for Privacy Protection	WP 2 - Legal Compliance and Scalability through Distribution	WP 3 - An Ecosystem to address the Blockchain's shortcomings

- Task 1.1: Privacy Opportunity Analysis.
- Task 1.2: From Legal Requirements to Specification.
- Task 1.3: Smart Contracts for Legal Compliance.

- Task 2.1: Challenges of Distribution.
- Task 2.2: Combining legal specifications and distribution requirements.
- Task 2.3: Improving Blockchain storage.

• Task 3.1: Privacy versus technical characteristics of the Blockchain.

- Task 3.2: Enforcing privacy policies.
- Task 3.3: Composing data structures into a consistent ancillary ecosystem.

ТАЗКЅ 1.1-1.3

Blockchain as a privacy risk		Blockchain as a privacy guarantee		Requirements for GDPR-compliant data replication		
The blockchain itself	Applications	Privacy-friendly storage on blockchain	Decentralised trust: The ultimate goal for Privacy?	GDPR's core requirements	Blockchain properties	
 Immutability Violation of the GDPR (Article 5) Data disclosure, a privacy risk. Absence of rights management how to determine the data controller? how to enforce legal actions? 	 Issues around the Internet of Things Generalized and undiffernentiated collection of personal data Extraterritoriality makes it difficult to implement rights Issues arouns self-sovreign identity New identity management Risk of generalized surveillance 	 A variety of storage mechanisms Geo-Controlled replication as a potential solution Blockchain as hash storage only Establish reliable traceability by encryption An asset for accurate data proofing A new form of electronic archival 	 Decentralised trust for privacy Self sovereign identity Towards generalized automation (Smart contract) Evolution of services and trusted third parties Joint use of signatures, stamps and electronic time stamps Trusted services and third parties. 	 Right of access, rectification and deletion of data Regulation of data portability Right to object to fully automated data processing Material and territorial scope of the GDPR (Articles 2 and 3) Lawful, fair and transparent data processing (Article 5) 	 Transparency: Participants can access all registered data Replication and Decentralization: Several copies of the blockchain exist simultaneously on different machines Irreversibility: Once data is entered, it cannot be changed or deleted. Disintermediation: Decisions recached through consensus without a centralized arbitrator 	

SHARED MEMORY WITH BYZANTINE ACTORS

Advantages of a memory abstraction

Ease of use resulting from intuitive properties like Linearizability: i.e. an operation knows all updates applied by operations that ended before it started.

Challenges

- Memory with Byzantine actors has received little attention.
- We do not know exactly what it allows us to implement.

First Contribution

• We studied three abstractions and how to pass from one to the other.

	7			
read/write		(read/write-increment)	$\xrightarrow{\cdot}$	read/append
	.,		.,	

GOOD-CASE LATENCY OF EARLY-STOPPING BYZANTINE RELIABLE BROADCAST

Good case latency

Number of rounds needed for the correct processes to brb-deliver a message brb-broadcast by a correct process

friendly blockchain

Early stopping

Number of rounds depends on the effective actual number f of Byzantine processes $f = n - c \le t$ (e.g., min(t + c)1, f + 2)) [1]

Strongly adaptive adversary

Is there a **deterministic** BRB algorithm whose good case latency is smaller that t + 1?

The algorithm in a nutshell

• During a round: each process adds its signature to the message + signatures chains it receives, and sends them

SPLITCHAIN: RESILIENT-SCALABLE SHARDING

Scalabilty

Adaptive elastic sharding, dynamically adpting to load

Localized Management

- Proof of Eligibility [4] at a local level
- Each shard managages a separate set of transactions
- No inter-shard consensus

Broadcast based intershard coordination

- Leverage recent results on money transfer [2, 3]
- Broadcast ephemaral coordiantion blocks
- Organize inter-shard trasaction in a DAG

Read/Write register

- Read() will return the last value write in this register.
- Write(v) will write the value 'v' in this register.

Read/Write-Increment register

- Read() will return the last value written and the number of write calls on this register.
- Write(v) will write the value 'v' and increment the write counter of this register by 1.

Read/Append register

- Read() will return the history of all value written in this register.
- Append(v) will add the value 'v' at the end of the history of this register.

Our previous work

The comparaison of theses registers was already discussed in "Atomic Read/Write Memory in Signature-Free Byzantine Asynchronous Message-Passing Systems", were an implementation of Read/Write-Increment from Send/Receive is proposed with a resilience of $t < \frac{n}{3}$. This implies the existence of an implementation of Read/Write-Increment from Read/Write with a resilience of $t < \frac{n}{2}$.

$\underbrace{\text{read/write}} \xrightarrow{t < \frac{n}{3}} \underbrace{\text{send/receive}} \xrightarrow{t < \frac{n}{3}} \underbrace{\text{read/write-increment}}$	nt
--	----

Our contributions

We observe that

- the definition of Read/Write register is included in that of definition of Read/Writeincrement.
- the definition of the Read/Write-increment register is included in the that of the Read/ Append register.

So, we have wait-free algorithms for both transformations.

$\begin{tabular}{ c c c c } \hline read/write \\ \hline t \le n \end{tabular} \begin{tabular}{ c c c c } \hline read/write - increment \\ \hline t \le n \end{tabular} \end{tabular} \begin{tabular}{ c c } \hline t \le n \end{tabular} \end{tabular}$	read/append
---	-------------

From read/write to read/write increment

We proved that $t < \frac{n}{3}$ is necessary and sufficient to implement a read/write increment from read/write.

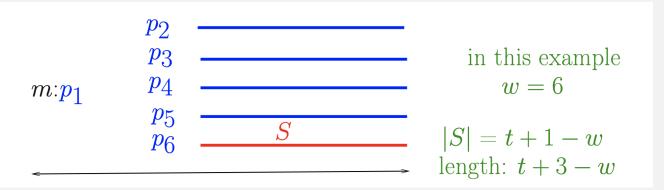
to each process

- Identification of a pattern in a set of messages and a predicate that allow the correct processes to brb-deliver a message m in at most max(2, t + 3 - c) rounds in good cases (i.e., when the sender of m is correct)
- At round R, a process considers only valid message + signatures chains (those have exactly R different signatures)

definitions and principles

Given a message m,

- certificate: set of signatures chains associated with m
- weight of a certificate: nb of processes whose signatures appear in the first two positions of the chains in the certificate, the corresponding processes are said to be backing m in the certificate
- Counting and propagating round-2 signatures is not enough as Byzantine process can hide part of a certificate from correct processes until round t + 1


key concept: *w*-revealing chain

When present in a certificate, such a chain "differs sufficiently" from the w backing processes present in the certificate to allow for a safe brb-delivery

Example

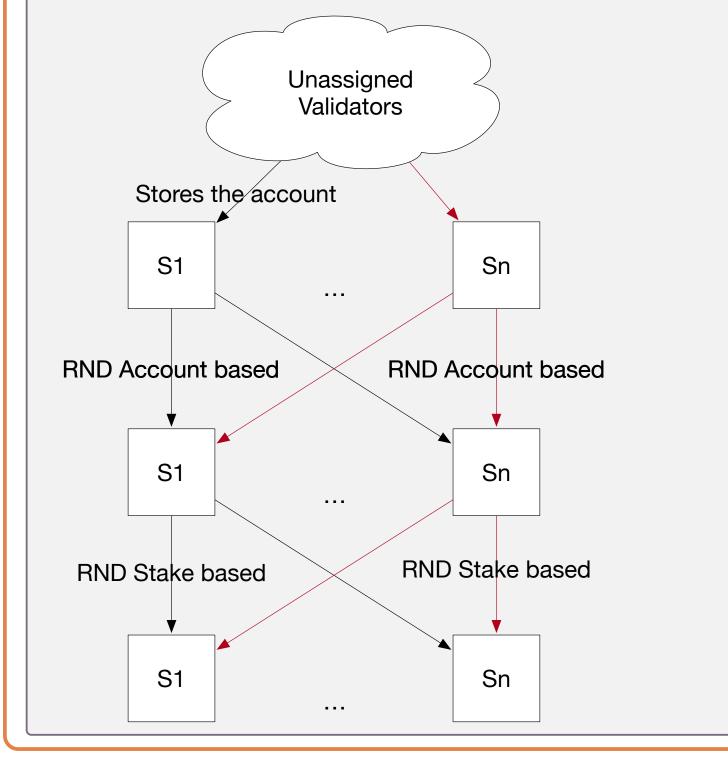
Let R = t + 3 - w be a round in which a correct process obtains a certificate whose weight w is such that there is a signature chain S starting at position 3 such that

{backing processes} $\cap S = \emptyset$

The signatures from position 3 to t+3-w (S) correspond to t+3-w-2 = t+1-w different processes. Added to the w backing processes p_1 , ..., p_6 , we obtain (t + 1 - w) + w = t + 1 processes, hence we have a set including a correct process!

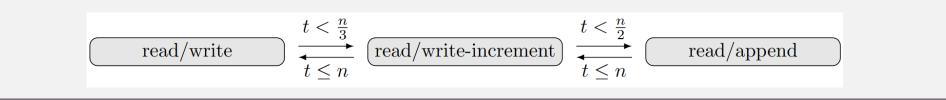
The case w=t+1

• When a message m has a certificate whose weight is w = t + 1, all the correct processes received a chain containing m by round 2


	Transaction Block T		Outbound Relay TX		Forwarded Relay TX x
	Transaction 0		Relay Transaction 0		Shard index
		-	· · ·		Height of chaining block
Chaining block C	Transaction x	-	Relay Transaction x		Transaction Operation
Shard index	Transaction n		Relay Transaction r		Position p in Outbound block
Hash of previous chaining block	Inbound Relay TX 0	-	1]	Merkle Tree Path to TX x
Timestamp					
Random Seed	Inbound Relay TX m				
confirmed TX (Merkle Root)	<u>_</u>				
Relay TX Proof (Merkle Root)					
Credentials Proof (Merkle Root)					
Count-Min Sketch (local view)					
Sparse Merkle Root (shard's accounts)					

High resistance to attacks

- Resist to 1% attack typical of sharded systems
- Resist to adaptive adversary


Multi-layer eligibility control

- Nodes validate consensus in random shards
- Two steps of indirection
- First steps randomizes participation
- Second step takes into account stake

From Read/Write-increment to Read/Append

We proposed an implementation of a Read-append register from a Read/Writeincrement register with a resilience of $t < \frac{n}{2}$. We also proved that this is optimal.

• Conversely, if a process has not received a chain containing a message m' by round 2, it knows that a certificate of weight t+1 cannot exist for m'

• It follows that, if p_i observes a certificate of weight t+1 for m, and is not aware of another message $m' \neq m$ by round 2, it can safely brb-deliver m (even if the sender is Byzantine)

• rbr-delivery of m may occurs as early as round R = 2 (pattern depending)

• When $c \ge t+1$, rbr-delivery of m always occurs at round R=2 (good case latency)

OUTREACH

- Brunessen Bertrand and Sandrine Turgis speakers at Colloque L'Europe et les nouvelles technologies, Nanterre, 10/06/2021.
- Blockchain & Privacy Conference (Rennes, 2022) organized by Brunessen Bertrand and Sandrine Turgis, 22 speakers from France, Belgium and Canada. To be published in 2023 with Larcier (editor).
- Timothé Albouy, Davide Frey, Michel Raynal, François Taïani. Goodcase Early-Stopping Latency of Synchronous Byzantine Reliable Broadcast: The Deterministic Case. To Appear at DISC 2022, Oct 2022, Augusta, GA, United States.

REFERENCES

cast: A Complete Categorization". In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing. PODC'21. Virtual Event, Italy: Association for Computing Ma- [3] Rachid Guerraoui et al. "The Consensus Number of a [4] Geoffrey Saunois et al. "Permissionless Consensus based on chinery, 2021, pp. 331-341. ISBN: 9781450385480. DOI: 10. 1145/3465084.3467899. URL: https://doi.org/10. 1145/3465084.3467899.

[1] Ittai Abraham et al. "Good-Case Latency of Byzantine Broad- [2] Alex Auvolat et al. "Money Transfer Made Simple". In: CoRR abs/2006.12276 (2020). arXiv: 2006.12276. URL: https:// arxiv.org/abs/2006.12276.

> Cryptocurrency". In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. PODC '19. Toronto ON, Canada: Association for Computing Machinery,

2019, pp. 307–316. ISBN: 9781450362177. DOI: 10.1145/ 3293611.3331589. URL: https://doi.org/10.1145/ 3293611.3331589.

Proof-of-Eligibility". In: 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). 2020, pp. 1–4. DOI: 10.1109/NCA51143.2020.9306715.

