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WP2: Design and implementation of 
photonic sub-systems.
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WP4: System demonstrations

WP3: Signal processing, 
modulation and waveforms.

1- Type of scan and 
path description

3- Near-field to far-field (FEKO) 2- Phase-less processing

Near-field antenna measurements

Wireless coherent near-field live transmission

Tx Wideband Stacked Patch Array Tx Narrowband Modulated Metasurface Array Optical beam forming network

WP1 : Design and fabrication of photonic
beam-steerable transmitting antenna array

WP2 : Design and implementation of 
photonic sub-systems

WP3 : Signal processing, modulation and
waveforms

WP4 : System demonstrations
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Active THz phase control 

H plane radiation pattern (steering plane)

100 GHz

• Low manufacturing complexity
• Easily upscalable gain in both planes

Measured RF phase offset according to liquid cristal 
RMS voltage at 𝐹 = 12 𝐺𝐻𝑧

• Large gain bandwidth ~ 25 GHz
• Standard but complex HDI PCB process
• Beam scanning capabilities up to +/- 10°
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• Easy and stable THz phase control
• Frequency/phase independence : 

Multi-carrier capable

• Photonic Integrated Circuit (PIC) 
compatible

• Coming improvement : Phase locking 
of each arm for long term stability
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Gain and directivity at 0°, 
5° and 10° steering angle

Gain/directivity BW from -
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Radiation pattern at 0°, 5°
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Max directivity 100 GHz
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Measurements campaigns
Experimental results

Comparison metrics:
• Bit Error Rate (BER),
• Peak-to-Average Power Ratio (PAPR),
• Adjacent Channel Power Ratio (ACPR),
• Spectral Efficiency (SE),
• Error Vector Magnitude (EVM).

Waveforms against non-linearity:
• CPM: robust,
• FSIM: highly vulnerable,
• M-QAM: vulnerable.

• Error free 90 GHz link at both 15.5 Gb/s with
QPSK waveform and 7.3 Gb/s with RC waveform

• Bandwidth limited by the non-uniform power 
emission of the THz emitter

• Incoming demonstration with homemade THz 
source with higher power and linearity for 100m+ 
links with beam steering capabilities
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