

JK

# DATERAC

Development and applications of exploratory technologies for the reconfiguration of antennas and microwave devices



E. Fourn<sup>1</sup>, D. Le Berre<sup>2</sup>, C. Raguénès<sup>1</sup>, Y. Amara<sup>2</sup>, R. Allanic<sup>2</sup>, C. Quendo<sup>2</sup>, C. Paranthoen<sup>3</sup>, V. Nazabal<sup>4</sup>, A. Bénardais<sup>4</sup>, L. Calvez<sup>4</sup>

<sup>1</sup> INSA Rennes, IETR - UMR CNRS 6164 <sup>2</sup> Univ Brest, LabSTICC - UMR CNRS 6285

CominLabs

<sup>3</sup> INSA Rennes, Foton Institute - UMR CNRS 6082 <sup>4</sup> Univ Rennes, ISCR - UMR CNRS 6226

#### Context

- Exploring 2 new techniques for reconfigurable microwave devices and antennas
  - Phase change materials (chalcogenide thin films) optically controlled
  - Substrate integrated semi-conductor junction electronically controlled
- Final goal: combining both techniques to multiply the reconfiguration possibilities and so the functionalities in a same component while limiting the complexity

### Reconfiguration using chalcogenide

- Material (GST) with 2 stable states (crystalline high  $\sigma$ /amorphous low  $\sigma$ )
- Second tests : DBR filters, characterization circuits
  - Planarization process by SiO2 layer



 Potential compatibility issues between SiO2 layer and GST



"Bubbles" in amorphous state

 Incomplete crystallisation with a low conductivity disabling reconfigurability (12 GHz to 8 GHz in simulation)





# **Retractable matching antenna**



 Antenna's reconfigurability through the use of chalcogenide thin films: frequency variation and matching.



Fabrication in progress

# Switchable resonator with doped area



- Co-design device
- More design flexibility
- No component postponement





10 15 20 25 30 35 40 5 Fréquence [GHz]

#### •One DC control signal



#### **Conclusion and perspectives**

- Obtained results not up to our expectations mainly due to technological problems, but:
  - Fabrication process is now being stabilized
  - New knowledge about chalcogenide materials and their optical actuation ٠
  - A lot of ideas to combine both reconfiguration techniques ٠
- DATERAC will be continued and will allow to combine both techniques! => ANR MACIEO (2024-2027) with the same 4 partners



