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® Need for learning acceleration mechanisms in both cloud (for large-scale ~
h Key feature: specify precision of operations
models) and on-site settings (e.g. autonomous driving, privacy). & quantisers at finest granularity
W(t) — W(t+1)

® Working on both arithmetic and algorithmic levels

e Design of dedicated HW operators 3. Do parameter update in HP

Archimedes-MPO and GEMM kernels
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Neural Network Controllers

e Approximate control law and
replace costly solvers

e Upto 100 layers

e Require ultra-fast HW

e High safety requirements
(error, controllability)

e Formally verified but no

guarantee on finite precision
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Example: Automated Cruise Control

Simulation framework

e extends TinyDNN C++ framework

Basic brick: multiplication by multiple constants

GEMM kernel on FPGA

e custom precision and operators

e parametrizable architecture

e Xilinx ZCU104 board

Classic MCM

GEMM kernel on GPU Metric: #additions

e Bit-accurate with FPGA

Realistic: 24 one-bit adders

e Convenient deployment & testing

Proposed MCM
Metric: #one-bit adders

Realistic: 9 one-bit adders

Truncated MCM
Metric: #one-bit adders & error

Realistic: 4 one-bit adders

Enables fully-parallel unrolled inference at high throughput and low power

Mixed-precision assignment

e Use ILP to assign precisions
under a priori rounding error
constraint

e Can use truncated MCM on

each dense layer

Hardware-friendly quantization-aware training

e Fine-tune an FP32 model for small coefficients

e Key idea: select coefficients that have pre-defined low adder-

cost for an MCM fully parallel implementation

@ Result: can retrain for cost-1 coefficients while staying safe

Project status

Hardware accelerator in active development

e Generic MAC units in fixed/floating-point

e Fully-parallel fixed-point basic bricks for GEMM
Quantization for inference

e ILP-based for small networks

e Heuristic search enabled by MPTorch

Training algorithms

e Trust-region based algorithms (WIP)

e Attention-layer retraining for NLP (collaboration

with CIFRE by Valeuriad company)
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