

NOP - Safe & Efficient Intermittent Computing for Battery-less IoT

Time

Execute

WCET of

inference

111.6

324.1

159.18

TurnOFF

volatile data

Number of inference

Completed

Battery-less Energy Harvesting IoT nodes

Eliminating electro-chemical batteries from Energy Harvesting IoT nodes

- Extend lifespan while decreasing needs for maintenance
- Reduce environmental footprint [3]

Building blocks already available

- Efficient and fast Non-Volatile Memory (NVM)
- Ultra-low-power microcontrollers
- Supercapacitors

What about energy availability?

- In limited quantity at a given time
- Is it too limited to perform complex functions (AI, signal processing)?

No! The solution is to weave together computation steps and idle periods to spread the execution over several charging cycles \rightarrow intermittent computing

Energy source (solar panel)

Safe & Efficient Intermittent Computing

energy

Available

TurnOFF

Save volatile data TurnON

Replenish

capacitor

WCET of

inference

Intermittent system

- Compute when possible
- Deal with intermittency
- Idle when energy is low

Efficiency

- No useless computations
- Minimize overhead
- No useless checkpoint

Safe intermittency

- No uncontrolled power failure
- Static guarantees (e.g., atomicity, forward progress)

RESURRECT: an energy-aware runtime for intermittent systems

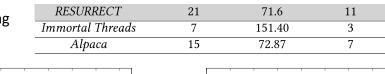
Energy

buffer

Objectives

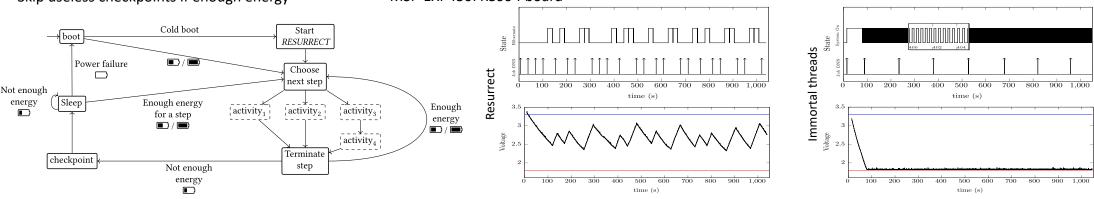
- Hw & Sw tasks, reactive and periodic functions
- Offline computation of optimal schedules [2]
- Weave optimal computation steps and idle periods
- Skip useless checkpoints if enough energy

Evaluation


VM

• Example of DNN benchmark

NVM


CPU

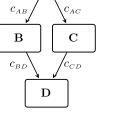
- Radio Frequency (RF) energy harvesting setup
- MSP-EXP430FR5994 board

Number of inference

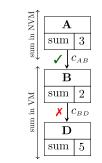
Completed

SCHEMATIC: Compiler-level co-optimization of memory mapping and checkpoint placement [1]

Objectives


- Split functions that take more than one charge to execute
- Minimize overhead of intermittency management

SCHEMATIC: Joint checkpoint and memory allocation


- Energy efficient memory mapping between checkpoints
- Insert checkpoints based on worst-case energy budget
- Target the most frequent paths first
- Account for limited size of volatile memory
- Ensure forward progress across load cycles

Evaluation: SCHEMATIC vs. SotA

- On average: 51% less energy consumed
- No useless computations

 \mathbf{A}

a. Analyzed CFG b. Path (A, B, D) before analysis

Α

sum 3

 \mathbf{B}

sum 2

 $? c_{BD}$

 \mathbf{D}

sum 5

? C_{AB}

c. Path (A, B, D)after analysis

Store in VM or NVM ?

Small number of checkpoints

? Potential checkpoint location

 \checkmark Checkpoint location enabled

× Checkpoint location disabled

Bird Song Recognition Sensor (WIP)

System design

- Functional design \checkmark
- Platform design 🗸

Software payload

- Signal acquisition √
- Event detection \checkmark
- Classification (CNN) √
- Storage/communication \checkmark

Software stack

- LLVM+SCHEMATIC ✓
- RESURRECT 🗸

Hardware platform

- TI MSP-EXP430FR5994 Launchpad
- Solar panel for EH 🗸
- Microphone, LPWAN, external NVM √
- ✓ Done ✓ In progress ✓ Todo

Main publications

[1] H. Reymond, J.-L. Béchennec, M. Briday, S. Faucou, I. Puaut, and E. Rohou. 2024. "SCHEMATIC: Compile-time checkpoint placement and memory allocation for intermittent systems." In IEEE/ACM International Symposium on Code Generation and Optimization (CGO).

Basic block

[2] A. Bernabeu, J.-L. Béchennec, M. Briday, S. Faucou, and O. H. Roux. 2023. "Cost-Optimal Timed Trace Synthesis for Scheduling of Intermittent Embedded Systems." In Discrete Event Dynamic Systems.

[3] V. Lostanlen, A. Bernabeu, J.-L. Béchennec, M. Briday, S. Faucou, and M. Lagrange. 2021. "Energy Efficiency Is Not Enough: Towards a Batteryless Internet of Sounds." In Proceedings of the International Workshop on the Internet of Sounds (IWIS). Best Paper Award .

Contributors: J.-L. Béchennec (LS2N-STR), O. Berder (IRISA-Granit), A. Bernabeu (LS2N-STR), M. Brunet (IETR-ASIC), S. Faucou (LS2N-STR), M. Briday (LS2N-STR), M. Gautier (IRISA-Granit), R. Gerzaguet (IRISA-Granit), M. Méndez Real (IETR-ASIC), S. Pillement (IETR-ASIC), I. Puaut (Inria-PACAP), H. Reymond (Inria-PACAP), E. Rohou (Inria-PACAP)

