CominLabs

WP 1: Mechanical Design of Soft Bodies and State Estimation

Figure 2. Stable deformation sequence of a test shape with one marker and 8 interpolation points.

- First-order error dynamics for a second-order dynamical systems • Several cases cannot be stabilized past a certain high-deformation

https://cominlabs.inria.fr

- Path to get near a desired shape impacts overall stability
- Are paths directly connected?

Manipulation with Multiples drones for soft Bodies Vincent Bégoc¹, Sébastien Briot¹, Abdelhamid Chriette¹, Isabelle Fantoni¹, Damien Six¹, *Philipp T. Tempel*¹,

Project: MAMBO

François Chaumette², Alexandre Krupa², Paolo Robuffo Giordano², <u>Lev Smolentsev²</u>, Fabien Spindler²,

¹Laboratoire des Sciences du Numérique de Nantes (LS2N) ²Centre Inria de l'Université de Rennes

erence ANR-10-LABX-07-01.

WP 2: Control of Underactuated Systems with Soft Bodies and Vision-Based Control

Agency in the "'Investing for the Future" program under ref-

Objective Shape Control of a Tether Cable Using Visual Servoing embedded on the drone

- Derivation of a geometric model for the control task
- Determination of relevant visual features and related interaction matrix
- Tracking of visual features from RGB-D vision
- Generation of the trajectories for the outputs of the drone from visual features

Methodology estimated

Figure 5. (a) Tether (green curve) and its parabola model (red curve) attached to the drones with corresponding frames; (b) Drone navigation stack diagram with all quantities used during control task

- Proposed visual features extracted from RGB-D image: $\boldsymbol{s} = (a, b, \alpha)$
- Visual error to minimize: $e = s s^*$
- Control law with a feed-forward term \boldsymbol{v}_f and an integral term:

$$oldsymbol{v}_m^* = oldsymbol{v}_f + \lambda oldsymbol{M} \hat{oldsymbol{e}} + \mu oldsymbol{M} \sum_i^N \hat{oldsymbol{e}}_i$$

 $\dot{\psi}_h^* = -\lambda(\psi_h - \psi_h^*) - \mu \sum_i^N (\psi_h - \psi_h^*)$

$$\dot{\psi}_{b_m}^* = -\lambda(\psi_{b_m} - \psi_{b_m}^*) - \mu \sum_{i}^{N} (\psi_{b_{mi}} - \psi_{b_m}^*)$$

with control gain $\lambda > 0$, $\mu > 0$ and M relating the velocities of the cable attachment points with the velocities of the visual features

• Secondary control task of the quadrotor yaw ψ_{b_m} for observing the tether with an onboard RGB-D sensor while performing the cable shaping task

Matrix M					
	$\int -k_1 \mathbf{s}_{\alpha}$	$-k_2 \mathbf{s}_{\alpha}$	$-Dc_{\alpha}$		
• $M =$	$k_1 \mathrm{c}_{lpha}$	$k_2 \mathrm{c}_{lpha}$	$-D\mathbf{s}_{\alpha}$	with $k_i = f(\boldsymbol{s}, D, L)$	
	$D^2 + tk_1$	$D+tk_2$	0		
where L is the cable length					
• Necessary condition to do the task is $\mathrm{rank} \boldsymbol{M} \equiv 3$					
The rank is less than 3 if and only if the cable is taut					
horizor	ntally or ve	ertically			
 Above mentioned configurations represent local minima 					
for the control task. Furthermore, given the Lyapunov					
candidate derivative $m{e}^T \dot{m{e}} = -\lambda m{e}^T m{M}^{-1} \widehat{m{M}} m{e}$ when					
$\widehat{D} = L$ the eigenvalues λ_i of the symmetric part of					
$M^{-1}\widehat{M}$ are always positive for a large number of target					
configurations s^st , which guarantees convergence of e					
and regardless of what $\widehat{D}>0$ used, $\lambda_3>0$ always					
guaran	guarantees convergence for e_{lpha}				

Features tracking from RGB-D data

- Estimation of the normal to the plane containing the tether in the world frame from observed point-cloud with RANSAC algorithm
- Check normal sign such that y_t of \mathcal{F}_t points toward the end of the cable
- Filtering of the normal using Kalman and estimation of the cable plane yaw α and of the pan of this plane from the gravity vector ϕ
- Projection of cable pointcloud into \mathcal{F}_t using ${}^{b_m}\widehat{H}_c$ and $oldsymbol{p}_m$ which are constant together with the drone odometry $\hat{m{x}}_{b_m}, \hat{m{R}}_{b_m}$
- Estimation of the parabolic coefficients a, b by least squares

Experimental Results

(a) First experiment with one

(b) Second experiment with two (c) Third experiment with box

grasping $m_{box} = 0.3 kg$

philipp.tempel@ls2n.fr lev.smolentsev@inria.fr