

Introduction

- Exploring 2 innovative techniques to reconfigure microwave devices and antennas
 - ✓ Phase change materials (PCM) optically controlled
 - Semiconductor Distributed Doped Areas (ScDDAs)
 - electronically controlled
- \triangleright In the longer term, combine both solutions to multiply the possibilities!

DATERAC

Development and applications of exploratory technologies for the reconfiguration of antennas and microwave devices

Erwan FOURN, Clément RAGUENES (IETR) Denis LE BERRE, Rozenn ALLANIC, Youcef AMARA, **IIIIETR** Cédric QUENDO (Lab-STICC) Cédric QUENDO (Lab-STICC) Other partners:

Cyril PARANTHOEN (institut FOTON) Virginie NAZABAL, Albane BENARDAIS (ISCR)

Reconfiguration principles

PCM

- Amorphous state => Low conductivity
- Crystalline state => High conductivity
- Conductivity ratio of 10⁴ to 10⁶

ScDDAs

- Co-design passive/active elements
- Classical doping implementation steps

Lab-STICC

Bandstop | Bandpass

S11 (dB)

S21 (dB)

CENTRALE NANTES

S11 (dB)

S21 (dB)

32 34 36

30 28

frea. GHz

• New degrees of freedom

Some proposed concepts of reconfigurable filters and antennas

Ē

Input 2.245

PCM thin films (150 nm)

PCM based bandstop to bandpass filter

- PCM in amorphous state => Bandstop
- PCM in crystalline state => Bandpass
- Technological characteristics:
 - Substrate Si HR, ε_r=11.9, h=280 μm • Metal: Al, *σ*=3.7x10⁷ S.m⁻¹, *t*=1 μm
 - GST: area width: 10 μ m
 - layer thickness: 150 nm, σ_{cryst} =1x10^5 S.m⁻¹

PCM based retractable matching antenna

- State 1: All PCM in amorphous state
- State 2: Green part in crystalline state
- State 3: All PCM in crystalline state
- Reconfiguration
 - Frequency (external parts)
 - Matching level (internal parts)

ŝ

cnrs

nicrostrip lines

Output

-20

40

22 24

26

Conclusions

Université Unica

- First encouraging measurements,
- But also a lot of disappoinments! ✓ PCM deposition problems
 - ✓ Defective doping
 - ✓ Clean room closure

=> Results not as good as expected and a lot of fabrication still in progess

And now?

Inserm

> ANR Project 2024-2028: MACIEO (IETR, Lab-STICC, ISCR and FOTON)

- 2 PhD and a 2-years post-doc
- > Objectives: Fixing the fab process, optimize the PCM, combine both technologies in ambititous devices

3.367 mm