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INTRODUCTION

Encoding with LDPC codes Learning over LDPC-coded data

Objectives of CoLearn/COMET: explore new compression methods for learning over
compressed data. This is in line with current initiatives for novel compression standards, like JPEG
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In CoLearn, we demonstrate that using LDPC codes as entropy coders, together with GRU models,
allows for image classification in the compressed domain.
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- We consider a lightweight GRU model for learning, in accordance with recent works on Deep Learning for
Maximum Likelihood decoding of channel codes

Numerical Results

With LDPC codes alone: With DCT + quantization + LDPC codes:
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Conclusions:

- Setup 1 is better in classifying coded images, with a 15% improvement for CIFAR-10 and 10% for Fashion-MNIST and MNIST.

- Setup 2 surpasses Setup 1 due to DCT's features.

- Learning on fewer bitplanes is possible, which allows better compression!

- Learning on the DCT coefficients sign biplane + the first bitplane gives results comparable to learning over original data

- The considers GRU models are of extremely low complexity, (70k weight vs. 80M weight for ResNet and VGG models over Huffman-coded data)

Objectives of the follow-up action

- In CoLearn and IoTAD-CEO, we have shown that LDPC codes are also relevant for other learning tasks: hypothesis testing, regression, clustering.
- we intend to consider an additional important learning task, that is image retrieval over JPEG compressed data
- Image retrieval consists of finding images, or parts of the images, similar to a request, in a dataset.

Working plan:

- Investigate image retrieval over |JPEG-coded data, using LDPC codes as entropy codes

- Identify relevant DL architectures adapted for this problem

- Develop a demonstrator in the form of a universal JPEG coder able to handle different learning tasks including classification, clustering, and image retrieval
- This demonstrator will be in the form of a Python code freely available on GitHub
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