SCRATCHS: Side-Channel Resistant Applications
Through Co-designed Hardware/Software
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SCRATCHS's goal is to co-design
a RISC-V processor and a com-
piler toolchain:

Timing vulnerabilities caused by behavior depending on a secret

if (secret) |

then ¢ ¢ else

x =0, vy =64
if (secret){

* In branching
X<y [ =y JT[ J * in memory access
} — Secret exposed
z = Memory [x] - 2z = Memory[x] 1

Attacker: observes time => deduces secret
» Behavior duration depends on resource usage (like memory access).

» Timing is observable when resource usage is shared between the vic-
tim and the attacker.

» Countermeasures already exist (resources partitioning, Constant-
Time programming), but are often costly.
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» Immune sensitive code to timing
side-channel attacks.

» Minimal overhead on the
micro-architecture.

» Considering a small-scale
embedded system.

» Hardware implements security mechanisms.

» Compiler produces binaries able to use these mechanisms to be side-channel resistant.

Simulation and leakages

Memory hierarchy and some functional units temporal behaviors (e.g. ALU, r
LSU, division or branching) can leak information &, Configuration - Simulator
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We identify three sources of leakage on the CV32E40P RISC-V processor:
_ Program Abstract leakage Concrete leakage
Leak Solutions ta—b 4 c o) o
Division and modulo op. — (Constant-time mode through a CSR 0t g — array'i,]' cache set(&array + i) cache miss
Non-aligned data requests — Solved by compiler toolchain lock(&array N );  cache set(&array + i) cache hit
Cache accesses (L1, L2, TLB...) = New lock and unlock instructions int a = arrayli]; o] cache hit

lock/unlock mechanism:

» The cache line is locked in cache until the locking process issues an
unlock operation

» At least one way of the cache is kept available to other processes’ data

» Implement lock on skewed randomized cache to augment security level

Abstract leakage: What could be seen, depends on current program and inputs
Concrete leakage: What is observed. Depends on current instruction and cache state.

Our claim:

All information of Concrete leakage is deductible from Abstract leakage = Non
interference of input in Abstract leakage means no timing attack possible = Security
guarantee for a program possible (for a given input space)

» Low overhead targeting FPGA (<3% on registers and LUTs) |

Security evaluation

We can protect symmetric encryption algorithms (AES, Camellia, etc.) that u

Camellia with SBox exposed

Camellia with SBox protected by locks

Performance evaluation

Comparison between sorting algorithms
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These figures display memory accesses that are visible to a potential attacker. A i |
Variation of visible accesses depending on the input means the input is exposed to timing attacks. i \ \ o
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