SCRATCHS: Side-Channel Resistant Applications
Through Co-designed Hardware/Software

AN\
Com | n |_O bs Frédéric Besson 1 Pascal Cotret # Nicolas Gaudin # Guy Gogniat “

/ Jean-Loup Hatchikian-Houdot ' Guillaume Hiet 2 Vianney Lapotre ?

_ Pierre Wilke 3

Z@) Contact: pierre.wilke@inria.fr

L EPICURE / IRISA / INRIA, Rennes

2 Lab-STICC, UBS, Lorient / ENSTA Bretagne, Brest
3 CIDRE / IRISA / INRIA, CentraleSupélec, Cesson-Sévigné

SCRATCHS

SCRATCHS add-in SCRATCHS add-in

SCRATCHS add-in
— X ‘ new ISA \ o
RISC-V Memory \ contract ’

Core hierarchy
Timing differences: \

(6 IRISA

(reeia — STICC

o

SCRATCHS's goal is to co-design
a RISC-V processor and a com-
piler toolchain:

Timing vulnerabilities caused by behavior depending on a secret

if (secret) |

then ¢ ¢ else

x =0, vy =64
if (secret){

* In branching
X<y [=y JT[J * in memory access
} — Secret exposed
z = Memory [x] - 2z = Memory[x] 1

Attacker: observes time => deduces secret
» Behavior duration depends on resource usage (like memory access).

» Timing is observable when resource usage is shared between the vic-
tim and the attacker.

» Countermeasures already exist (resources partitioning, Constant-
Time programming), but are often costly.

Cache lines locking mechanism

Timers
UART
SP] GPIOs
Hardware

<1!ﬂ=s11cc

’/
trusted

binary
code

0101101

< ------------------- - naive

C

Toolchain

lrzia — ® IRISA

» Immune sensitive code to timing
side-channel attacks.

» Minimal overhead on the
micro-architecture.

» Considering a small-scale
embedded system.

» Hardware implements security mechanisms.

» Compiler produces binaries able to use these mechanisms to be side-channel resistant.

Simulation and leakages

Memory hierarchy and some functional units temporal behaviors (e.g. ALU, r
LSU, division or branching) can leak information &, Configuration - Simulator
main memory Q* Cache size
5 Ry I A N Write policy Cache L1
G 8 S I — Schedulin
L1 |[(11-b | = J
CV32E40P N 1 Y I I
=
_____ s | | Z
————— I R SRR g .
e T elf file
We identify three sources of leakage on the CV32E40P RISC-V processor:
_ Program Abstract leakage Concrete leakage
Leak Solutions ta—b 4 c o) o
Division and modulo op. — (Constant-time mode through a CSR 0t g — array'i,]' cache set(&array + i) cache miss
Non-aligned data requests — Solved by compiler toolchain lock(&array N); cache set(&array + i) cache hit
Cache accesses (L1, L2, TLB...) = New lock and unlock instructions int a = arrayli]; o] cache hit

lock/unlock mechanism:

» The cache line is locked in cache until the locking process issues an
unlock operation

» At least one way of the cache is kept available to other processes’ data

» Implement lock on skewed randomized cache to augment security level

Abstract leakage: What could be seen, depends on current program and inputs
Concrete leakage: What is observed. Depends on current instruction and cache state.

Our claim:

All information of Concrete leakage is deductible from Abstract leakage = Non
interference of input in Abstract leakage means no timing attack possible = Security
guarantee for a program possible (for a given input space)

» Low overhead targeting FPGA (<3% on registers and LUTs) |

Security evaluation

We can protect symmetric encryption algorithms (AES, Camellia, etc.) that u

Camellia with SBox exposed

Camellia with SBox protected by locks

Performance evaluation

Comparison between sorting algorithms
se SBox (lookup table)

——DJB (CTS without locks)
—a— hybrid (256 B locked)

128 i (A 128 —e hybrid (1 kB locked)
; BT . —+—hybrid (4 kB locked)
0 i F I F e Se = e . 9 g8 &= gt
g e SR . - I 5 e ~ | merge (exposed) *
o L PR s o SPTICEITIE = gy 2 i e -+ 2
g | RN | ! g o Lock for input 1 :)/) |
< 32| | | o ! < * Lock for input 2 E - .
| Unprotected load for input 1 | Unprotected load for input 1 i - R
i , Unprotected load for input 2 o Unprotected load for input 2 - . i
%0 500 1,000 1,500 2,000 2,500 3,000 %0 500 1,000 1,500 2,000 2,500 3,000 .E : .
Execution progress (in step) Execution progress (in step) 8
9 6 | -
: i .. . 107 | .
These figures display memory accesses that are visible to a potential attacker. A i |
Variation of visible accesses depending on the input means the input is exposed to timing attacks. i \ \ o

|
4 8 16 32

Sorted array size (kB)

[1] N. Gaudin, J-L. Hatchikian-Houdot et al., "Work in Progress: Thwarting Timing Attacks in Microcontrollers using Fine-grained Hardware Protections”, 2023 IEEE European Symposium on Security

and Privacy Workshops (EuroS&PW), Delft, Netherlands, 2023, pp. 304-310, doi: 10.1109/EuroSPW59978.2023.00038.
2] J-L. Hatchikian-Houdot et al., " Formal Hardware/Software Models for Cache Locking Enabling Fast and Secure Code”, European Symposium on Research in Computer Security (ESORICS), 2024, doi:

10.1007/978-3-031-70896-1 8.
[3] N. Gaudin et al., "A Fine-Grained Dynamic Partitioning Against Cache-Based Timing Attacks via Cache Locking”, IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2024, doi:

@
)
U

7%

4

IMT Atlantique
Bretagne-Pays de la Loi

Wmmm 1
niversite = ,/

AN/ 4
'>|/I\\' de Rennes lta—

Université

Bretagne Sud
. 4 O
®

iy Laire UNIVERSITE
ole \Vines-lelecom hiy
ccccccccccc RE S leb

&S INSA

UNIVERSITE DE NANTES

INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES
RENNES

e

CentraleSupélec

&

rennes

o b penia o i o revhenba sl

CENTRALE
NANTES

b m | LB EHENSTA

BRETAGNE

Rennes

mailto:pierre.wilke@inria.fr

