
SCRATCHS: Side-Channel Resistant Applications
Through Co-designed Hardware/Software

Frédéric Besson 1 Pascal Cotret 2 Nicolas Gaudin 2 Guy Gogniat 2

Jean-Loup Hatchikian-Houdot 1 Guillaume Hiet 3 Vianney Lapôtre 2

Pierre Wilke 3

Contact: pierre.wilke@inria.fr
1 EPICURE / IRISA / INRIA, Rennes

2 Lab-STICC, UBS, Lorient / ENSTA Bretagne, Brest
3 CIDRE / IRISA / INRIA, CentraleSupélec, Cesson-Sévigné

Context

Drawbacks• Potential micro-architecture vulnerabilities (rely on CMOV)• More work for the same result (always do both branches)
Drawbacks•Performance downgrade (one cache partitioned)•Expensive Hardware (multiple caches)

RAMRAM
Cache 1Cache 1

Constant Time Programming in Software Resource isolation in Hardware

• Most timing attacks exploit resource sharing
→Isolating resources will prevent these attacks

Timing vulnerabilities caused by behavior depending on a secret
x = 0, y = 64
if (secret){
 x = y
}
z = Memory[x]

x = 0, y = 64
z = Memory[x]
t = Memory[y]
z = (secret) ? t : z

if (secret)

x = y

z = Memory[x]

then
Timing differences :
• in branching
• in memory access
→ Secret exposed

• Linear program flow
• Both branches executed
→ No timing variations
 (that depends on any secret)

Contract = ISA extension with new instructions
• Software gets control over Hardware security
• Allow to apply costly security only when needed

User

Attacker
Cache 2Cache 2

CMOV

Optimized Operation: Try to finish as fast as possible
 Variable execution time → Could expose information

Problem: ASLoad from RAM is too slow
• Maximum time of load explode because of cache miss
→ ASLoad from RAM would not be usable in practice
Solution: We restrict ASLoad to cache only
→ Data loaded with ASLoad must be guaranteed in cache

Asynchronous Safe Operation (ASOp)
Will keep the result until requested

 Start
 ASOp

 Program keeps working
 (independent of ASOp)

Request
result

Use
result

Safe Operations: no micro-architecture leaks

Asynchronous Safe Operation (ASOp)
Don’t block the program with safe but slow operations
→ Reduce the time wasted = security at low-cost

 Start
 ASOp ASLoad on s

Start AS-
Load on s

Program keeps
working

Request
s

Use
s

CacheCache

s

• Secret s is loaded in cache
• s is protected from eviction
→ We can later request ASLoad (from cache) on s

Don’t forget to unprotect and clean s in cache at the end

skip

 Safe Operation: Constant execution time (Slow)
 Execution time is always the same → nothing to observe

Start Finish

Equivalent data oblivious code (behavior independent of secret)

else

?
Protect in Cache on secret
Can load from RAM

s

RAMRAM

Hardware/Software Contract
for Constant Time Security

Cache Isolation

Existing Countermeasures against timing attacks

Thesis Proposal: a Contract between Hardware and Software

Previous Works about Hardware/Software Contract :
• J. Yu, L. Hsiung, M.E. Hajj, and C.W Fletcher, (2018). Data Oblivious ISA Extensions
for Side Channel-Resistant and High Performance Computing. IACR Cryptol.
• Q. Ge, Y. Yarom. and G. Heiser, (2018). No Security Without Time Protection:
We Need a New Hardware-Software Contract. In Proceedings of the 9th Asia-Pacific
Workshop on Systems
• G. Heiser, (2017). For Safety’s Sake: We Need a New Hardware-Software Contract!
IEEE Design & Test.

Jean-Loup
HATCHIKIAN-HOUDOT
jean-loup.hatchikian-houdot@inria.fr

Supervised by
Guillaume HIET
Frédéric BESSON
Pierre WILKE

Side
Channel
Resistant
Applications
Through
Co-designed
Hardware
Software

 SCRATCHS
project.inria.fr/scratchs/

Attacker: observes time ⇒ deduces secret
▶Behavior duration depends on resource usage (like memory access).
▶Timing is observable when resource usage is shared between the vic-
tim and the attacker.

▶Countermeasures already exist (resources partitioning, Constant-
Time programming), but are often costly.

SCRATCHS

Hardware Toolchain

RISC-V
Core

SCRATCHS add-in

Memory
hierarchy

SCRATCHS add-in

UART

Timers

SPI GPIOs

SCRATCHS add-in

naive

.c

µ
.S

mem

map

3

33

0101101

trusted
binary
code

new ISA

contract SCRATCHS’s goal is to co-design
a RISC-V processor and a com-
piler toolchain:
▶ Immune sensitive code to timing
side-channel attacks.

▶Minimal overhead on the
micro-architecture.

▶Considering a small-scale
embedded system.

▶Hardware implements security mechanisms.

▶Compiler produces binaries able to use these mechanisms to be side-channel resistant.

Cache lines locking mechanism

Memory hierarchy and some functional units temporal behaviors (e.g. ALU,
LSU, division or branching) can leak information �.

va
lid

di
rt
y

LO
C
K

pr
oc
es
sI
D

tag cache line

se
t1

se
t2

se
t3

CV32E40P

L1-DL1-I

L2

main memory

IF ID EX WB

fetch

c d

decode

RF div

LSU

�

� �

�

new features
in SCRATCHS

We identify three sources of leakage on the CV32E40P RISC-V processor:

Leak Solutions

Division and modulo op. Constant-time mode through a CSR
Non-aligned data requests Solved by compiler toolchain
Cache accesses (L1, L2, TLB. . .) New lock and unlock instructions

lock/unlock mechanism:
▶The cache line is locked in cache until the locking process issues an
unlock operation

▶At least one way of the cache is kept available to other processes’ data
▶ Implement lock on skewed randomized cache to augment security level
▶ Low overhead targeting FPGA (<3% on registers and LUTs)

Simulation and leakages

Program Abstract leakage Concrete leakage
int a = b + c; [•] [•]
int a = array[i]; cache set(&array + i) cache miss
lock(&array + i); cache set(&array + i) cache hit
int a = array[i]; [•] cache hit

Abstract leakage: What could be seen, depends on current program and inputs
Concrete leakage: What is observed. Depends on current instruction and cache state.

Our claim:

All information of Concrete leakage is deductible from Abstract leakage ⇒ Non
interference of input in Abstract leakage means no timing attack possible ⇒ Security
guarantee for a program possible (for a given input space)

Results

Security evaluation
We can protect symmetric encryption algorithms (AES, Camellia, etc.) that use SBox (lookup table)

Camellia with SBox exposed

18/23

Abstract leakage of unprotected Camellia

0 500 1,000 1,500 2,000 2,500 3,000
0

32

64

96

128

Execution progress (in step)

A
cc

es
se

d
ca

ch
e

se
ts

Unprotected load for input 1
Unprotected load for input 2

Camellia with SBox protected by locks

19/23

Abstract leakage of protected Camellia

0 500 1,000 1,500 2,000 2,500 3,000
0

32

64

96

128

Execution progress (in step)

A
cc

es
se

d
ca

ch
e

se
ts

Lock for input 1
Lock for input 2
Unprotected load for input 1
Unprotected load for input 2

These figures display memory accesses that are visible to a potential attacker.
Variation of visible accesses depending on the input means the input is exposed to timing attacks.

Performance evaluation
Comparison between sorting algorithms

4 8 16 32

106

107

Sorted array size (kB)

E
xe

cu
ti

on
ti

m
e

(C
yc

le
s)

DJB (CTS without locks)
hybrid (256 B locked)
hybrid (1 kB locked)
hybrid (4 kB locked)
merge (exposed)

1

[1] N. Gaudin, J-L. Hatchikian-Houdot et al., ”Work in Progress: Thwarting Timing Attacks in Microcontrollers using Fine-grained Hardware Protections”, 2023 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), Delft, Netherlands, 2023, pp. 304-310, doi: 10.1109/EuroSPW59978.2023.00038.
[2] J-L. Hatchikian-Houdot et al., ”Formal Hardware/Software Models for Cache Locking Enabling Fast and Secure Code”, European Symposium on Research in Computer Security (ESORICS), 2024, doi:
10.1007/978-3-031-70896-1 8.

[3] N. Gaudin et al., ”A Fine-Grained Dynamic Partitioning Against Cache-Based Timing Attacks via Cache Locking”, IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2024, doi:

10.1109/ISVLSI61997.2024.00041.

mailto:pierre.wilke@inria.fr

