

LeanAI: Dynamic Precision **Training on the Edge**

∮ SIRISA

 Need for learning acceleration mechanism in both cloud (for large-scale models) and *on-site* settings (e.g. autonomous driving, privacy)

Working on both arithmetic and algorithmic levels ٠ Design of dedicated HW operators

Stochastic Rounding for DNN Training Acceleration

Stochastic Rounding (SR) can recapture information that is discarded when bits are rounded off in long computation chains (e.g. long summations or dot products)

Results:

- Achieve up to 18.5% and 14.5% savings in area and energy
- Can report up to 32.2% delay reduction

Configuration	Е	Μ	r	Delay	Area	Energy
-				(ns)	(μm^2)	$(\mu W/MHz)$
			4	1.85	508.36	0.46
			7	1.87	540.19	0.49
SR eager W/O Sub	6	5	9	1.87	558.63	0.51
-			11	1.93	579.19	0.53
			13	1.93	601.71	0,56
RN W/ Sub (FP16)	5	10	-	2.73	692.62	0.65
RN W/ Sub (FP32)	8	23	-	4.71	1404.01	1.17

Shown to be beneficial for DNN training acceleration Challenge: not obvious how to optimize in hardware

Basic building block is the multiply accumulate (MAC) unit: z = xy + z

Classic SR Design (lazy)

Proposed SR Design (eager)

Configuration: ResNet18 + CIFAR10

LABORATOIRE

DES SCIENCES

DU NUMÉRIQUE

DE NANTES

Configuration	Е	Μ	r	Accuracy (%)
FP32 Baseline	8	23	-	91.47
RN W/ Sub	5	10	-	91.1
RN W/ Sub	8	7	-	88.79
RN W/ Sub	6	5	-	83.03
SR W/ Sub	6	5	4	43.11
SR W/ Sub	6	5	9	89.34
SR W/ Sub	6	5	11	90.7
SR W/ Sub	6	5	13	91.39
SR W/O Sub	6	5	11	90.67
SR W/O Sub	6	5	13	91.39

Model/Dataset	Configuration	Е	М	r	Accuracy (%)
	FP32 Baseline	Configuration E M r Accura P32 Baseline 8 23 - 93. RN W/ Sub 5 10 - 93. SR W/O Sub 6 5 13 93. 'P32 Baseline 8 23 - 80. RN W/ Sub 5 10 - 80.	93.46		
VGG16/CIFAR10	RN W/ Sub		93.06		
	SR W/O Sub	6	5	13	93.11
	FP32 Baseline	8	23	-	80.94
ResNet50/Imagewoof	RN W/ Sub	ub 5 10 -	80.3		
	SR W/O Sub	6	5	13	80.33

Theoretical result: probabilistic error analysis on the number of required random bits r need to implement SR wrt the length n of the compute chain

$r \approx \left[\log_2(n)/2\right]$

Support for CPU & GPU simulation + FPGA-based accelerator prototyping

MPTorch: Mixed-Precision DNN Compute Simulator

3. Do parameter update in HP

AdaQAT: Adaptive Quantization-Aware Training

Optimization-based method for mixed-precision (weights and activations) DNN quantization

Idea:

$\mathcal{L}_{\text{total}} = \mathcal{L}\left(\left[N_{\mathbf{w}}\right], \left[N_{\mathbf{a}}\right]\right)$	+ $\lambda \mathscr{L}_{\mathbf{HW}}\left(\left[N_{\mathbf{w}}\right],\left[N_{\mathbf{a}}\right]\right)$
	$:= \left[N_{\mathbf{w}} \right] \left[N_{\mathbf{a}} \right]$ BitOps HW cost estimate
$\frac{\partial \mathscr{L}}{\partial N_{\mathbf{w}}} \approx \mathscr{L}\left(\left[N_{\mathbf{w}}\right], \left[N_{\mathbf{a}}\right]\right) - \mathscr{L}\left(\left\lfloor N_{\mathbf{w}}\right\rfloor, \left[N_{\mathbf{a}}\right]\right)$	$\frac{\partial \mathscr{L}}{\partial N_{\mathbf{a}}} \approx \mathscr{L}\left(\left[N_{\mathbf{w}}\right], \left[N_{\mathbf{a}}\right]\right) - \mathscr{L}\left(\left[N_{\mathbf{w}}\right], \left[N_{\mathbf{a}}\right]\right)$
$\frac{\partial \mathscr{L}_{\text{total}}}{\partial N} \approx \frac{\partial \mathscr{L}}{\partial N} + \lambda \frac{\partial \mathscr{L}_{\text{HW}}}{\partial [N]}$	$\frac{\partial \mathscr{L}_{\text{total}}}{\partial N} \approx \frac{\partial \mathscr{L}}{\partial N} + \lambda \frac{\partial \mathscr{L}_{\text{HW}}}{\partial [N]}$

Model	Method	# exploration epochs	# total epochs	Bit-width (W/A)	Accuracy (%) top-1	BitOPs (Gb)
8	DQ [Uhl+19]	50	50	5.11/10.4	70.1	93.6
et-]	FracBits [YJ21b]	120	50	4.00'/4.00	70.6	34.7
$^{\rm sN}$	SDQ [Hua+22]	60	150	3.85/4	71.7	33.4
${ m Re}$	Our	<1	100	3.84/4.00	71.4	31.4
MobileNet-V2	DQ [Uhl+19] FracBits [YJ21b] SDQ [Hua+22] Our	50 120 60 <1	50 150 180 150	5.77/- 4.00/4.00 3.79/4 3.86/3.88	69.7 71.3 72.0 71.3	93.6 5.35 5.07 4.95

Publications:

