Holistic software/hardware model by integrating
processing capabilities all along the path from the
main memory to the processor.

Model

Graph” (PAFG)

of computation

“Passive-Active Flow

RIDIM: Reconfigurable stream
dataflow computing near

memory

Kevin Martin, Philippe Coussy, Univ. Bretagne-Sud, Lab-STICC
Jean-Francois Nezan, Maxime Pelcat, INSA Rennes, IETR
Steven Derrien, Univ. Rennesl, Irisa/INRIA

Shuvra S. Bhattacharyya, Univ. of Maryland, College Park, USA

and INSA Rennes

@sncc

o IRISA

IIETR

Optimization of data movements between chips

Memory bandwidth is known to be a performance
bottleneck for FPGA accelerators, especially when
they deal with large multi-dimensional data-sets. A
large body of work focuses on reducing of off-chip
transfers, but few authors try to improve the
efficiency of transfers. The later issue is addressed
by proposing (i) a compiler-based approach to
accelerator’s data layout to maximize contiguous

Macro-pipeline structure: read-execute-write. Our
contribution focuses on the read and write stages.

access to off-chip memory, and (ii) data packing
and runtime compression techniques that take

Passivization of
an actor:

§

v/ No explicit LI I advantage of this layout to further improve

data Fgy Tractonal processing ﬁg % memory performance. We show that our approach

v r':l‘:‘f’ierir:g”t g %.Mﬁd Feiesh| [P can de.cre:ase the 1/0 cycles up to 7x compared to
. - un-optimized memory accesses.

Read Execution
BN .
f LA Tile i1 = % Engine
_ J — Scratchpad Tile |
Off-chip[_| Memories ololole
memary \N‘]\ .
h Write <: @ ©
Tile i-1 (L
- Accelerator -

Exploration of customizable interconnects and organizations

Scratchy is a class of software-managed communication multi-RISC-V adaptable architectures designed
for streaming applications. Scratchy uses scratchpad memories and offers customizable interconnect
topology and storage options to optimize synchronization and communication time. The custom
interconnects can provide many topologies with arbitrary numbers of busses and scratchpad memories.
A middleware for Synchronous DataFlow (SDF) applications is provided through the LiteX and PREESM
tools for static scheduling. This work demonstrates Scratchy capabilities through a design space
exploration test case that aims to derive an efficient multicore topology for executing two SDF-described
applications. Additionally, customizing the communication for a 3-core Scratchy only adds 2% resource
overhead. The implementations presented in the article [1] were developed using a small Intel MAX10
FPGA with only 205 kB of BRAM. Among the architectures implemented, the most resource-intensive
takes less than 5 minutes to synthesize.

A_1lFe
12000 =
Architectures

Static 11000 o

Scheduling
10000 -

A1Fi, =

2
1=
<. 9000 = A 3 3Fi
g A_3 3Fe
2 A2 2fe A_3 FiFeFi
= 8000 A_3 FeFeFi
Scratchy Bare-Metal C Code A3 a3F
Generator -
7000 A 2 FeFi AELOER
RISCV A2 2Fi A_3_a FiFeFi
Toolchain A_3_a Fefefi
—— Pareto front
6000 A_3 3F

o101 lroi| foror L

o101 roi 1ol

1o Lo o1ol A 3 a3F
2000 3000 4000 5000 6000 7000 8000 9000

Processors
Executables

- -
Generated
Scratchy Architecture

Design flow proposed in Scratchy.

Ressources (LE)

Resources vs Cycles Per Graph Iterations (CPGl)

Programmability

Starting from a dataflow model of computation, it
is possible to automatically detect and derive the
actors candidates for computing in network. An
ongoing work focuses on how to automatically
transform an SDF graph into a PAFG. The PAFG
features allow to map the corresponding actors
onto the computing routers.

Publications

[1] Joseph W Faye, Naouel Haggui, Florent Kermarrec,
Kevin J] M Martin, Shuvra Bhattacharyya, Jean-Francois
Nezan, Maxime Pelcat. Scratchy : A Class of Adaptable
Architectures with Software-Managed Communication
for Edge Streaming Applications. DASIP 2024.

[2] Corentin Ferry, Nicolas Derumigny, Steven Derrien,
and Sanjay Rajopadhye. “An Irredundant and Compressed
Data Layout to Optimize Bandwidth Utilization of FPGA
Accelerators.” arXiv preprint 2024

PoolingSlayer

PoolingSlayer: a Computing-in-Network Approach
to Accelerate Pooling Layers of Al applications

—>
Mapping to .—2’ :
PoolingSlayer /6 27x27x128
w
224x224x3
Main Memory | [Chipset Tile [N Tile
588 KiB . e P-Mesh Ariane Core
3 MiB i s] &
P-Mesh cache
- | % I %
m . NoC Router
= | Tile
7 PoolingSlayer o ’/- P-Mesh
& A k.

The hardware solution is embedded inside the
routers of the network-on-chip, but is vyet
programmable through a simple software
mechanism that allows a core to configure it for
max pooling or token pooling. The experimental
results on an OpenPiton platform shows up to 41%
performance improvement compared to the
baseline approach for vision transformer
application, with an energy consumption nearly
halved.

Combined Layer [Tnput Di [Baseline (ms) | PoolingSlayer (ms) | Perf Gain (%)
SqueezeNet

Conv1 + MaxPooll 224 224 x 3 62 44 29.0%

Fire3 + MaxPool2 55 x 55 x 96 55 36 34.5%

Fire5 + MaxPool3 27 5 27 x 128 59 36 39.0%
ResNet-50

Convl + MaxPooll [224 x224 x 3 [120] 90 25.0%

VGG-16

Convl]_I-2 + MaxPooll | 224 x 224 % 3 181 122 32.6%

Conv2_1-2 + MaxPool2 | 112 x 112 x G4 180 121 32 8%

Conv3_1-3 + MaxPool3 | 56 x 56 x 128 225 140 378%

Conv4_1-3 + MaxPoold | 28 x 28 x 256 223 140 37.2%

Conv3_1-3 + MaxPool5 | 14 x 11 x 512 220 142 355%

Vi
Attention + Pooll 16 x 16 tokens x D features 124 74 40.3%
Attention + Pool2-12 & % & tokens x D features 1325 778 41.3%

Université

ez o TV Nantes
l e W Université

4 nd

IMT Aﬂamlque
oe

E,: | M esTemnm

N Université M
Z,\' deRennes

UNIVERSITE
RENNES it

&’Lu'a,— U?oQ

rennes

(3
o 7
Inserm '© &
* SCIENCesPO ccounes
CentraleSupelec lRenLneZ (8]

-
w g“g BEngrﬁ-cré

E CENTRALE
NANTES

	Slide 1

