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Geodesic Gaussian Preserving Flows

Observations

- Deep neural networks are extremely popular but require
well-defined mathematical frameworks

- Some neural behave like dynamical systems, here an
example of a Res-Net similar to an ODE in the limit

- Goal : turning Normalizing Flows into Monge Maps with
Geodesic Gaussian Preserving Flows

- Brenier's polar factorization to transform any trained
Normalizing Flow into a more Optimal Transport efficient

Residual Network _ ODE Network version without changing the final density
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diffeomorphisms thanks to Euler’s equation
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A residual network deﬁ nes a discrete sequence Of ﬁ nite tr ansf ormations, whose Target distribution GP flow without Euler GP flow + Euler Exact discrete OT map

combination is a way of building diffeomorphisms. A ODE network defines a
vector field, which continuously transforms the state.

Goals of the project

- H Oow Can ad | €arn I N 8 S}/Ste M b € €X p resSse d dS d dyn aim ica | Comparison of GP flow with and without Euler for the Pinwheel test case. Euler regularization leads to a better convergence result
system?
- How can learning-based methods help in simulating Sliced-Wasserstein on Manifolds

complex dynamic systems?
- How to handle the probabilistic nature of data ?

- Data often lie on manifolds or have an underlying structure
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| - Particular case of Riemannian manifold: Cartan-Hadamard

manifolds: Non-positive curvature, complete and connected
- Goal: defining SW discrepancy on Cartan-Hadamard
manifolds taking care of geometry of the manifold
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Simulating complex dynamic systems M/EEG data:
' Recorded from the brain

» Multivariate time series X € RV*T
» Transform X into distribution of SPDs

- PINNUS: PINNs for Unsupervised Super-resolution
- Train a PINN on low resolution images of turbulence
- Use regularizers to perform super resolution and denoising on
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- Sub-grid model (Kolmogorov theory) at higher scales #A—— AT
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- Regularization of vorticity for spatial gradient consistency D s e —
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Figure: (left) Turbulent Energy Spectra against resolution scale for different models (ground- e Di Carlo, D., Heitz, D., Corpetti, T. & Courty, N. (2022, July). Post processing sparse and instantaneous 2D velocity fields using
truth spectra in gray dashed line). (right) Ground-truth and reconstructed vector fields with physics-informed neural networks. In 20th International Symposium on Application of Mlaser and Imaging Techniques to Fluid

proposed models. Mechanics




