

Crowd Animation Open Software

User’s documentation

JANUARY 8, 2019
INRIA

1

Table of Contents
1. Overview .. 2

a. Introduction ... 2

b. Running ChAOS .. 2

2. Controls ... 3

a. General commands ... 3

b. Camera movement .. 3

c. Camera filters .. 3

3. Files format .. 4

a. Scenario files.. 4

b. Trajectory files ... 6

c. Obstacles files .. 7

d. Stage files .. 7

4. Camera Settings ... 8

a. Camera modes ... 8

b. Config of camera Settings ... 8

a. Interface of camera Settings .. 9

5. Learning ... 10

a. Camera filters .. 10

b. Data ... 11

6. Command Line ... 12

7. Examples .. 13

2

1. Overview

a. Introduction
ChAOS is a visualization tool to create a crowd with animated virtual humans from trajectory

files. It can be used to visualize the results of a crowd simulation, replay data from tracked individuals

or simply having animated virtual humans followings specific trajectories. ChAOS is able to save

pictures at a specific framerate, which can be used to generate video with other tools such as

ffmpeg.

b. Running ChAOS

Figure 1: ChAOS starting menu

Trajectories can easily be animated using ChAOS. First the trajectories need to be translated in

the right format, described in section 3.b. Then a scenario file, loading the trajectories and setting the

animation parameters, has to be created (see section 3.a). Once this is done, the ChAOS executable

can be run. In the application menu, shown on Figure 1, you have to select the scenario folder. Then

select your scenario and click the start button to load it. Finally, hit the space key from the keyboard

or press the “play button” on the screen to start the animation.

To create a video, modify the configuration file to enable recording (see explanation page 3) then

launch the executable. Access to the configuration panel by hitting the “p” key from the keyboard or

select the “Setting” menu on the top of the screen. Once the recording is over, the application should

quit automatically and a set of pictures should be present in the output directory specify in the

configuration file. A video can be generated from this set of pictures using a third-party software

such as ffmpeg. Here is an example of command to generate a video with ffmpeg (“-r 15” define the

input framerate as 15 and should be change to correspond to the recording framerate specify in the

ChAOS configuration file):

ffmpeg -r 15 -i img%03d.png -c:v libx264 -vf fps=25 -pix_fmt yuv420p out.mp4

3

2. Controls

a. General commands

Key Description

escape Open/Close the menu.

Space Pause/Resume the animation

P Access to the configuration panel

b. Camera movement

Key Description

Arrows Translate the camera in the direction of the arrows (forward, backward, right and
left).

Shift +
Arrows

Accelerate the camera translation induce by the arrows.

Ctrl +
Arrows

Translate the camera in the direction of the arrows on the 2d plane independent from
elevation (forward, backward, right and left).

Mouse
right click

Rotate the camera following the mouse movement.

F5 Save the camera positioning in the scenario file to reuse it in future replay.

c. Camera filters

Key Description

F9 Switch to the previous camera filter

F10 Switch to the next camera filter

F11 Reset filter to original image

4

3. Files format

a. Scenario files

Figure 2: Scenario file example

A scenario is composed of a set of trajectories to animate and a few parameters that can be

optional or mandatory. The scenario parameters are described in an xml file, an example of such file

is given in Figure 2. The list of parameters that can be set by the scenario file is given in the Tableau

1.

XML parent Parameter Description

 env_filesPath The path to the directory containing all the

<?xml version="1.0" encoding="utf-8"?>

<ConfigData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- Specify the directory with all the trajectory files -->

 <env_filesPath>.\Scenarios\ExampleTwoColors\</env_filesPath>

 <env_obstFile>.\Scenarios\Decor\obstExampleTwoColors.xml</env_obstFile>

 <!-- Camera positioning -->

 <cam>

 <cameraType typeID="3" />

 <position x="0" y="0" z="30" />

 <rotation x="90" y="0" z="0" />

 <lookAtAgent agentID="2" />

 <followAgent agentID="2"

 followOnX="true"
 followOnY="true"
 lockFirstPerson="false"
 smoothFirstPerson="true" />

 <CamResolution x="-1" y="-1" />

 </cam>

 <!-- Configure recording: save picture in the give directory from start

to end with specific framerate -->

 <recording start="0" end="0" framerate="15" width="-1" height="-1">

 <saveDir>.\Output\</saveDir>

 <saveImgOriginal record="true" quality="8"

 width="-1" height="-1" />

 <saveImgSegmentation record="false" quality="8"

 width="-1" height="-1" />

 <saveImgCategories record="false" quality="8"

 width="-1" height="-1" />

 <saveImgDepth record="false" quality="8"

 width="-1" height="-1"

 minDepth="0" maxDepth="50" exponent="1" />

 <saveImgNormals record="false" quality="8"

 width="-1" height="-1" />

 <saveImgOpticalFlow record="false" quality="8"

 width="-1" height="-1"

 motionVector="false" />

 <saveBodyBoundingBoxes record="false" />

 <saveHeadBoundingBoxes record="false" />

 </recording>

 <!-- Define the colors of the agents (agents not in the list get a

random colors) -->

 <AgentColorList>

 <color firstAgent="0" step="1" lastAgent="191" red="1" green="0"

blue="0" />

 <color firstAgent="192" step="1" lastAgent="383" red="0" green="1"

blue="0" />

 </AgentColorList>

</ConfigData>

5

trajectory files.

 env_obstFile
The path to the XML files containing a list of
obstacles

 env_stageInfos
Load the gameObject (scenery) named
stageName from a unity asset bundle file

env_stageInfos file The path to the unity asset bundle file

env_stageInfos position Position of the loaded gameObject

env_stageInfos rotation Rotation of the loaded gameObject

 cam
List the parameters specific to the camera.
(The position and rotation can be set during
runtime and saved using the F5 key.)

Cam cameraType

The different types for the camera defined
by typeID correspond to the following:
(0)Free: free movments. (1)Follow: the
camera follow the agentID of followAgent.
(2)LookAt: the camera point at the agentID
defined by lookAtAgent. (3)FirstPerson: the
camera is attached to the user agentID of
followAgent. (4)Torsum: similar to
FirstPerson, but attached to the torsum.
Check section 7 for more details.

Cam position Initial Position of the camera

Cam rotation Initial Rotation of the camera

Cam lookAtAgent
In (2)LookAt mode it defines the agent
agentID in sight, constraining the camera
rotations.

Cam followAgent

In (1)Follow,(3)FirstPerson and (4)Torsum
modes it defines the agent agentID to
follow, constraining the camera translations.
In (1) mode: If followOnX=“true” enables
translation on X. If followOnY=“true” enables
translation on Y.
In (3),(4) modes: If lockFirstPerson=”true”
the camera rotations are constrained to
look ahead of the agent. If
smoothFirstPerson=”true” the oscillating
movement of the camera are smoothed out.

 recording

Activate recording between the time start
and end with specific framerate. Recorded
image resolution can be forced by specifying
the width and height (set to -1 to use the
windows resolution).

Recording saveDir
The path to the directory where all the
recording pictures are saved

Recording saveImg[Type]

Define a type of image to save with the
following parameters:
The Boolean record whether the image is
recorded.

6

quality which can be 8, 16 or 32 defines the
number of bit per channel use during
recording.
width and height define the resolution of the
recorded image (overwrite the parameters
from the parent object)
Specific parameters see section 5.a for more
details.

Recording

saveBodyBoun-
dingBoxes

saveHeadBoun-
dingBoxes

Define whether the body and/or the head
bounding boxes data are saved through the
Boolean record

 AgentColorList
List the color for all the agents with specific
colors

AgentColorList color

Specify a color for every step agents from
firstAgent to LastAgent
The color is set from and RGB code with red,
green and blue value between 0 and 1
If the color of an agent is not specify, it is
randomize.

Tableau 1: The list of XML items uses by the scenario file

b. Trajectory files

Figure 3: Trajectory file example (Format: time, x, y)

Trajectory files are a set of CSV files, each containing the trajectory of one agent. The files are

sorted alphabetically and the ID of the agent correspond to its position in the sorted list, starting

from 0. A trajectory file follows the following format: “Time, position.X, position.Y” as shown by the

example in Figure 3.

0.1,-21.9582,-0.429098

0.2,-21.8447,-0.429502

0.3,-21.7325,-0.434389

0.4,-21.6205,-0.440434

0.5,-21.5083,-0.446389

0.6,-21.3959,-0.451533

0.7,-21.2831,-0.455441

0.8,-21.1699,-0.457503

0.9,-21.0565,-0.458042

1.0,-20.9430,-0.458283

1.1,-20.8331,-0.453430

1.2,-20.7230,-0.448326

1.3,-20.6130,-0.443207

1.4,-20.5032,-0.441068

1.5,-20.3935,-0.438831

1.6,-20.2841,-0.436204

1.7,-20.1748,-0.433453

1.8,-20.0656,-0.430283

1.9,-19.9565,-0.426964

2.0,-19.8475,-0.423200

7

c. Obstacles files

Figure 4: Obstacle file example

When loading a set of trajectories, the animation is play in an empty environment. ChAOS

enables you to add simple obstacles in the environment (rectangular and cylinder shaped). The

obstacles’ parameters are describe in an xml file that is loaded by the scenario file using the

env_obstFile parameter (see section 3.a). An example of obstacles file is show on Figure 4.

XML parent Parameter Description

 Rectangles List of rectangle shaped obstacles

Rectangles Rectangle
Define a rectangle shaped obstacle:
Create the line AB with a specific Width

Rectangle A Position of the first point of the line

Rectangle B Position of the second point of the line

 Cylinders List of cylinder shaped obstacles

Cylinders Cylinder
Define a cylinder shaped obstacle:
Create a cylinder from a center and a radius

Cylinder Center Position of the center of the cylinder

d. Stage files
For more complex stage with specific structures, ChAOS is able to load Unity’s asset using the

AssetBundle Workflow. First, the stage needs to be design in Unity. Then the AssetBundle can be

built (see Unity doc: https://docs.unity3d.com/Manual/AssetBundles-Workflow.html). Finally, to load

the AssetBundle in ChAOS, its path has to be specify in the scenario file using the env_stageInfos

parameter (see section 3.a).

<?xml version="1.0" encoding="utf-8"?>

<XMLObstacles xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- Define Rectangular shaped obstacles -->

 <!-- a line with a width -->

 <Rectangles>

 <Rectangle Width="0.2">

 <B X="50" Y="-3" />

 </Rectangle>

 <Rectangle Width="0.2">

 <B X="50" Y="3" />

 </Rectangle>

 </Rectangles>

 <!-- Define Cylindrical shaped obstacles -->

 <!-- a point with a radius -->

 <Cylinders>

 <Cylinder Radius="1">

 <Center X="2.5" Y="0" />

 </Cylinder>

 <Cylinder Radius="2">

 <Center X="5" Y="1" />

 </Cylinder>

 </Cylinders>

</XMLObstacles>

https://docs.unity3d.com/Manual/AssetBundles-Workflow.html

8

...

 <!-- Camera positioning -->

 <cam>

 <cameraType typeID="3" />

 <position x="0" y="0" z="30" />

 <rotation x="90" y="0" z="0" />

 <lookAtAgent agentID="2" />

 <followAgent agentID="2"

 followOnX="true"

 followOnY="true"

 lockFirstPerson="false"

 smoothFirstPerson="true"

/>

 <CamResolution x="-1" y="-1" />

 </cam>

...

4. Camera Settings
There are different available parametrization for the camera, to allows modification to the orientaiton

and position of the camera.

a. Camera modes

We have defined 4 different modes:

0. Free: move free in the environment starting from the current position (reset ->restore default
position).

1. Follow: the camera position follows the agent defined in AgentID (if not defined it is
automatically set to the id 0) on the axes selected with followOnX and followOnY.

- Additional parameters:
a. AgentId : the id of the agent to follow.
b. followOnX : enable translation on X.
c. followOnY : enable translation on Y.

- Movement:
a. Translation: free with automatic translation.
b. Rotation: free.

- Reset button: restore default orientation.
2. Look At: the camera orientation follow the agent defined in AgentID (if not defined is

automatically set to the id 0).
- Additional parameters:

a. AgentId : the id of the agent to look at.
- Movement:

a. Translation: free on the X and Y axes.
b. Rotation: constrained.

- Reset button: restore default position.
3. FirstPerson: It attaches the camera to the head of the user.

- Additional parameters:
a. smoothFirstPersonView : smooth out the oscillations of the camera.
b. lockFirstPersonView : lock the rotation of the camera.

- Movement:
a. Translation: constrained.
b. Rotation: free/constrained.

- Reset button: set the orientation of the camera to look in front.
4. Torsum: It attaches the camera to the torsum of the user.

- Additional parameters:
a. smoothFirstPersonView : smooth out the oscillations of the camera.
b. lockFirstPersonView : lock the rotation of the camera.

- Movement:
a. Translation: constrained.
b. Rotation: free/constrained.

- Reset button: set the orientation of the
camera to look in front.

b. Config of camera Settings
In the configration file all the parameters are exposed

and the mode can be selected by the typeId of the

cameraType tag, using the id from 0 to 4, this

corresponde to the modes lisited in the previous

section.

9

a. Interface of camera Settings
The interface to access the camera parameters is on the bottom right part of the screen

.

The buttons are automatically activated if we are currently in the related mode.

10

5. Learning
Chaos is able to produce data that can be relevant for learning algorithm. You will find a

description of these data in this section.

a. Camera filters

Figure 5: Available camera filters.

The first type of data generated for learning is images. From the original images used to create

videos of crowd trajectories with animated virtual humans, 5 filters can be applied to store different

data on the pixels of the images (see Figure 5):

 ImgSegmentation: this filter will color every objects in the image with a different color

segmenting every virtual humans as well as every parts of the stage.

 ImgCategories: This filter will color every objects in the image with a color corresponding

to its type: red for virtual humans, blue for obstacles and green for the ground. For

personalized stage file import via AssetBundle, object as to be categorized manually by

selecting a specific unity layer for every GameObject. Layer 8 is for virtual humans, layer

9 is for the ground, layer 10 is for obstacles and any layer above can be used for other

types of object.

 ImgDepth: This filter color every pixel according to the distance from the camera of the

corresponding object point. The distance (dist) is transform to a shade of grey (shade)

using the following equations (red variables defined in the scenario file see section 3.a):

 𝑠ℎ𝑎𝑑𝑒 = {

0 𝑖𝑓 𝑑𝑖𝑠𝑡 < 𝑀𝑖𝑛𝐷𝑖𝑠𝑡

(
(𝑑𝑖𝑠𝑡−𝑀𝑖𝑛𝐷𝑖𝑠𝑡)

(𝑀𝑎𝑠𝑡𝐷𝑖𝑠𝑡−𝑀𝑖𝑛𝐷𝑖𝑠𝑡)
)𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑓 𝑀𝑖𝑛𝐷𝑖𝑠𝑡 < 𝑑𝑖𝑠𝑡 < 𝑀𝑎𝑥𝐷𝑖𝑠𝑡

1 𝑖𝑓 𝑑𝑖𝑠𝑡 > 𝑀𝑎𝑥𝐷𝑖𝑠𝑡

 ImgNormals: This filter color every pixel according to the normal of the corresponding

surface.

 ImgOpticalFlow: This filter color every pixel according to the direction of movement of

the corresponding object point. The color wheel used by direction is represented by the

Figure 6. The vector optical flow (Vx, Vy) can be recorded instead by setting the

11

parameter motionVector to true (see section 3.a) in which case the R channel will be Vx

and the G channel will be Vy.

Figure 6: Optical Flow Wheel

b. Data

The data generated by this module will be a csv file for each recorder (body or head bounding box).

The architecture of the ground truth is inspired by the MOT challenge. In this file you will find the

ground truth for each object at each frame with a specific sequences of values. Each line of the file

will contain 10 values:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <x>, <y>, <z>

With :

 Frame : number of the current frame

 Id : id of the agent

 bb_left, bb_top, bb_width, bb_height: bounding box information

 conf : confidence detection in our case 1

 x,y,z : the object world coordinates (for now -1,-1,-1)

12

6. Command Line
It is also possible to launch Chaos via a command line by giving several input parameters. You will

find below the list of parameters to use:

 -s PathScenario: Indicates the path (PathScenario) to the scenario you want to

run.

 -r Width Height: Indicates the resolution (Widht,Height) you want to use for

recording the image.

 -batchmode: Indicates that Chaos will run without graphic window

This is an example of using Chaos via command line on windows: ChAOS.exe -s
Scenarios\ExampleLookAt.xml -r 720 480 -batchmode

13

7. Examples
The application is provided with three scenarios as examples covering the main features of

ChAOS. These scenarios are in the default scenarios folder and are selectable directly from the

starting menu. To run one, select it on the starting menu and click run. The three scenarios are

described below:

ExampleFollow

Features:

 Camera following an agent

 Creation of cylinders shaped obstacles

 Agents spawning after the start of the
animation

 Agents disappearing before the end of the
animations

List of files (in the Scenarios folder):

 Scenario file (ExampleFollow.XML)

 Trajectory folder (ExampleFollow/)

 Obstacle file
(Decor/obstExampleFollow.xml)

ExampleLookAt

Features:

 Camera looking at an agent

 Loading a stage from an AssetBundle
List of files (in the Scenarios folder):

 Scenario file (ExampleLookAt.XML)

 Trajectory folder (ExampleLookAt/)

 AssetBundle (Decor/building)

ExampleTwoColors

Features:

 Creation of rectangle shaped obstacles

 Forced agents’ color
List of files (in the Scenarios folder):

 Scenario file (ExampleTwoColors.XML)

 Trajectory folder (ExampleTwoColors/)

 Obstacle file
(Decor/obstExampleTwoColors.xml)

14

ExampleFirstPerson
 Features:

 Camera in the head of the agent

 Creation of cylinders shaped obstacles

 Agents spawning after the start of the
animation

 Agents disappearing before the end of the
animations
List of files (in the Scenarios folder):

 Scenario file (ExampleFollow.XML)

 Trajectory folder (ExampleFollow/)

 Obstacle file (Decor/obstExampleFollow.xml)

