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Objective of the talk(!)

We revisit some (not-so-recent) Theoretical Computer Science, based on
G. Plotkin’s Unlabelled Transition Systems.

“Machine Semantics” — Theoretical Computer Science (PMH)

“From Causality to Computational Models”
— Int. J. of Unconventional Comp. (PMH)

Originally developed to resolve an outstanding problem in QM computation

“Quantum Circuits for Abstract Machine Computations”
— Theoretical Computer Science (PMH)

but ended up being applied more widely; particularly, to explain why we see structures
from Linear Logic & Geometry of Interaction in models of automata & state machines.

“A categorical framework for finite state machines”
— Mathematical Structures in Computer Science (PMH)

Motivation :

Currently being revisited for further applications . . . in several C.S. - related topics
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The simplest model of computation

An (unlabelled) Transition System is simply a set X of configurations, together with
a discrete notion of causality.

Given a configuration x P X , we can find the ‘next configuration(s)’.

determinism x ÞÑ x 1

partiality x ÞÑ tu

non-determinism x ÞÑ tx 1
1, x

1
2, x

1
3u

“Of course, this idea is hardly new, and examples can be found in any
book on automata, formal languages, or programming languages ”

A Structural Approach to Operational Semantics — G. Plotkin

S.A.O.S. Aarhus Tech. Report (1981)

“This is too general a notion to produce any useful theory ”
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“Of course, this idea is hardly new, and examples can be found in any
book on automata, formal languages, or programming languages ”

A Structural Approach to Operational Semantics — G. Plotkin

S.A.O.S. Published version (2004)

“This is too general a notion to produce any useful theory ”
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An inessential simplification

We consider the case with partial, deterministic dynamics

!!!

!!!
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!
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!
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!

A (countable) set X
of configurations.

A (partial) transition
function, P : X Ñ X

(also known as the
primitive evolution).

Partiality gives, for free, notions of start / halt configurations :

Starting config.s These satisfy P´1
psq “ tu.

Halting config.s These satisfy Pphq “ tu.
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Another relevant quote . . .

Again, from ‘A Structural Approach to Operational Semantics’ :

“We ignore the fact that transitions only make sense at a certain level.

What counts as a single transition may consist of many steps when

viewed in more detail.

It is a matter of experience to choose the right definition.”

Question :

Given transition systems pX ,Pq and pX ,Qq on the same configuration set, when

do they, “describe the same computation at different levels of detail” ?

This is what we axiomatise, in order-theoretic terms.
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The high-level vs. Low-level comparison

In his book ‘Gödel, Escher, Bach’, D. Hofstadter describes what he calls “chunking”,
with the following example :

The von Neumann architecture

Assembly Language level

Compiled Language level

Computer as ‘black box’

No information (!)

We intuitively think of
“low-level” vs. “high-level” as
a form of ordering!

The same computation,
described at different levels
of generality.
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Basic definitions

Given a partial function η : X Ñ X , its transitive closure is the relation

η` def .
“

8
ď

j“1

ηj

The key definition

Given transition systems pX , ηq and pX , µq we say that

η is a refinement of µ when µ Ď η`
“

Ť8

j“1 η
j .

Operationally : η is a refinement of µ when, for all configurations x P X ,

µpxq “ y ñ D Nx ą 0 s.t . ηNx pxq “ y

Notation We suggestively write this as µ ă η.
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Decomposing steps of transition systems

! ! "

!"!"#

!!

#

#
# #

#

“Every single transition of pX , µq may be decomposed

into multiple transitions of pX , ηq.”

Trivially, every partial function is a refinement of the nowhere-defined
partial function Kpxq “ tu.
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Different views of the same computation

Given a transition system pX ,Pq, its machine semantics is the set of partial functions
refined by P.

rPs
def .
“ tη : X Ñ X such that η ă Pu

— all representations, or ‘partial descriptions’ of the behaviour of pX ,Pq.

This is closed under composition of partial functions, and hence a
semigroup with a zero K.

Additional properties

Reflexivity η ă η

Transitivity ν ă µ and µ ă η implies ν ă η

Two Questions :

1 Do we have a partial order ?

2 What is the relationship between composition and refinement ?
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Ceci n’est pas un poset . . .

We do not have the symmetry property

η ă µ and µ ă η does not imply η “ µ

The relation ă is a preorder, but not a partial order.

Counterexample : the group Z3

Configuration set X “ t0, 1, 2u

ηpxq “ x ` 1 mod 3 , µpxq “ x ` 2 mod 3

The obstacle to ă being a partial order is cyclic behaviour.

Even worse, the usual preorder Ñ partial order quotient commonly

causes a collapse to triviality.
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Cycle-freeness

Definitions : A transition system pX , ηq is cycle-free iff, for all x P X

ηK
pxq ‰ x @ K ą 0

When |X | ă 8 this is simply nilpotency of η.

For an arbitrary transition system, define its cycle-free semantics rrPss Ď rPs by

rrPss
def .
“ tη ă P : pX , ηq is cycle-freeu

— the collection of partial descriptions of pX ,Pq that, “do not see cyclic behaviour”.

Refinement then becomes a partial order

prrPss,ăq is then a poset (but not necessarily a semigroup . . . ) with bottom element K.
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The structure of cycle-free semantics

When pX ,Pq is itself cycle-free, its cycle-free semantics rrPss has

a particularly neat form.

Cycle-free semantics and machine semantics coincide rrPss “ rPs.

rrPss is a semigroup with a partial order.

— but order & composition are not compatible!

There is a top element P : X Ñ X

and a bottom element K : X Ñ X

We have closure under finite meets and arbitrary joins

— explicit formulæ to follow!

We arrive at a locale or pointless topology.

A special form of Heyting algebra, or Lindenbaum-Tarski algebra of an intuitionistic logic
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Meets in the cycle-free semantics

Consider some finite subset tηj ujPJ Ď rrPss.

Assume (w.l.o.g.) that each of these is defined at some configuration x P X ,

so ηj pxq exists, for all j P J.

For each ηj , there exists a unique Nj ą 0 such that ηj pxq “ PNj pxq.

The meet is defined in terms of the least common multiple Lx “ lcmptNj ujPJ q

of these unique natural numbers:
˜

ľ

jPJ

ηj

¸

pxq “ PLx pxq

As the set tNi ujPJ Ď N is finite, this least common multiple exists.
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Joins in the cycle-free semantics

Alternatively, consider an arbitrary subset tµk ukPK Ď rrPss.

Consider some configuration x P X such that (again w.l.o.g.) µk pxq exists for all k P K .

For each µk , there exists a unique Mk P N satisfying µk pxq “ PMk pxq.

The join is defined in terms of the greatest common divisor of

the countable set Gx “ gcdptMk ukPK q

˜

ł

kPK

µk

¸

pxq “ PGx pxq

The greatest common divisor of tMk u Ď N always exists.
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What about the general case ?

Consider the cycle-free semantics of an arbitrary transition system pX ,Pq.
1 pprrPss,ăq is a poset, with bottom element the nowhere-defined function K

2 The down-closure of every element is a locale.
3 It does not, in general, contain P itself — there is no top element.
4 It is directed-complete

– at least, assuming the axiom of choice.

5 It has compact or finitary elements

these are the partial functions with finite support.
6 Every element is the supremum of a chain of finitary elements.
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Directed-completeness as Zeno’s paradox ?

Consider an infinite chain η0 ă η1 ă η2 ă η3 ă . . .

This must have a supremum within rrPss.

  1

*
*

*
* *

*
** * *

*

* **
* * *

 ...

Chain-completeness 
prevents :
Computational paths 
with infinitely many 
intermediate points

Unbounded infinite chains imply :

Computational paths with infinitely
many distinct steps.

y
`

P`
˘

x but PN
pxq ‰ y @N ą 0 P M

Thus prrPss,ăq is chain-complete.
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Directed-completeness & the axiom of choice

The key property we want is directed-completeness :

A directed set D Ď rrPss is one for which any d , d 1
P D there exists

some e P D with d , d 1
ă e.

Iwamura’s Lemma is a key tool of domain theory :
“Chain-Completeness implies Directed-Completeness,”

– a Lemma on Directed Sets (Tsurane Iwamura 1944)

So, finally ...

prrMss,ăq is a Scott Domain.

Computing suprema : how & why we should do this.
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Some motivation

Given a transition system pX ,Pq, recall the start & halt configurations :

Xstart “ ts : P´1
psqu emptyu , Xhalt “ ts : Ppsq emptyu

Define the boundary to be ∆ “ Xstart Y Xhalt Ď X

and the interior to be its compliment, O “ Xz∆.

We wish to move from :

The most detailed step-by-step description, P : X Ñ X to

The most detailed start-halt description

The ‘largest’ element of rrPss defined solely on the boundary ∆.
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Matrix form of transitions

Taking an arbitrary split of the configurations :

Let us divide the configuration set as disjoint union, X “ A Z B :

Every η P rPs can be written as a matrix

η “

ˆ

η11 η12

η21 η22

˙

Where entries in distinct columns have
disjoint support.

! ! "

!
"

#$!%! "&

In digraph form :

A
η11 //

η21

&&

A

B
η22

//
η12

88

B
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Composition as ‘summing over paths’

Composition of partial functions (or relations, or partial injective functions, etc.) is given
by the usual ‘summing over paths’ matrix formula :

A
η11 //

η21

&&

A
µ11 //

µ21

&&

A

B
η22

//
η12

88

B
µ22

//
µ12

88

B

“

A
µ11η11 Y µ12η21 //

µ22η21 Y µ21η11

**

A

B
µ22η22 Y µ21η12

//
µ11η12 Y µ12η22

44

B
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The trace on partial functions

The ‘particle-style’ categorical trace : another “summing over paths” construction

A B

IdU

A

giving :

A

η11

OO

η21

GG

B

η12

WW

η22

OO

A

η11Y
Ť8

j“0 η12η22
jη21

OO

A partial function TrB
ˆ

η11 η12

η21 η22

˙

“ η11 Y
Ť8

j“0 η12η22
jη21
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Some background

This is an example of a categorical trace :

Abstract cat. definition introduced by A. Joyal, R. Street, D. Verity (1996)

(See also S. Abramsky (1996) & M. Hyland (unpublished))

— giving the particle-style trace on Relations with Disjoint Union as an example.

Extended to other categories by various authors

1 Partial functions (E. Haghverdi 2001)
2 Partial Injective functions (PMH 1997)

— prefigured by Lutz & Derby’s JANUS programming language (1982)
3 Fixed-point operators (Hyland, Benton 2002)
4 Stochastic Relations & Markov processes (P. Panangaden 2007, 2009)
5 . . . and many others.

Seen in slightly disguised form as Girard’s Resolution Formula,

from his first three Geometry of Interaction papers (1989-94)

peter.hines@york.ac.uk www.peterhines.info nihil sub sōle novum 23 / 29



The trace, and refinement

Consider a transition system pA Z B,Pq and a representation η P rPs

The trace TrB
pηq satisfies

“Representations refine their traces” : TrB
pηq ă η.

As a (trivial) consequence

η ă µ ñ TrB
pηq ă µ

“Traces preserve cycle-freeness”

η P rrPss ñ TrB
pηq P rrPss

Given some ν ă η that is only defined on A then ν ă TrB
pηq.
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The categorical trace as a supremum

Given X “ A Z B,

Let us denote the representations
‘only defined on A’ by rMsA “

tµ : dompµq Ď A Ě impµqu Ď rPs

! ! "

!

"#$%$& !

!"

!!

!

!

!

!"#""$ %!
"

Whenever rMsA is partially ordered :

TrB
pηq “ Suptµ P rMsA : µ ă ηu
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A significant special case

Let us split the configuration set into

The boundary ∆ – the start-halt states.

The Interior O – the ‘intermediate’ states.

Definition The black box semantics p|P|q Ď rrPss Ď rPs is the set of representations
only defined on the boundary.

Partial functions that take start states to halt states

The most general of these is of course of interest!

On p|P|q, the refinement ă becomes the inclusion ordering on partial functions:

f ă g exactly when f pxq “ y ñ gpxq “ y

pp|P|q,ăq is a lattice-enriched semigroup, since ηµ “ K, for all η, µ P p|P|q.

Bottom element : the nowhere-defined partial function K.

Top element : the trace TrOpPq.
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Confluence of refinement ?

The categorical trace allows us to move from

the most general step-by-step description of dynamics, to

the most general start-halt description of the same system

in a single jump . . . but sometimes, a single jump is too much.

Consider ‘hiding the behaviour’ one configuration at a time

Given a subset of configurations tx0, x1, x2u Ď X . How does the chain

Tr tx0,x1x2u
pηq ă Tr tx0,x1u

pηq ă Tr tx0u
pηq ă η

relate to

Tr tx2u
´

Tr tx1u
´

Tr tx0u
pηq

¯¯

ă Tr tx1u
´

Tr tx0u
pηq

¯

ă Tr tx0u
pηq ă η

Or indeed re-orderings of either of these ?
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A key property of traces

A key property of traces is that they are confluent.

From Joyal, Street , & Verity (1996)

The vanishing II axiom statesa

TrA
´

TrB
p q

¯

“ TrB
´

TrA
p q

¯

“ TrAZB
p q

aIn our setting, up to symmetry & inclusion maps.

The process of moving from :

operational, or step-by-step descriptions of a transition system, to

denotational or start-halt descriptions of the same system,

is confluent and can be carried out in a fine-grained manner.

A property equally at home in logic, lambda calculus, and automata theory :)
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Future directions / ongoing work

Logic / Category Theory What are the properties of traces on monoids (i.e.
categories with only one object) ?

“On strict extensional reflexivity on compact closed categories ”
— Outstanding Contributions in Logic (PMH 2013)

Automata Theory Is there a notion of trace that preserves properties such as
planarity? – a property already studied in automata theory & logic.

Information Theory Refinement describes the notion of “hiding information”
about a computation.

Less info. η ă µ more info.

Can we quantify how much, in information-theoretic terms?

Number theory / Foundations of computation J. Conway’s proof of
undecidability / computational universality in elementary arithmetic is based on :

iterative problems on simple arithmetic operators,
a translation into Universal Register Machines.

Can we describe this in logical / categorical terms instead?
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