On the Order Theory of Unlabelled Transition Systems

Peter M. Hines — University of York

GT-DAAL Meeting

Rennes – April 2024

Au fond de l'Inconnu pour trouver du nouveau!

Objective of the talk(!)

We revisit some (not-so-recent) Theoretical Computer Science, based on G. Plotkin's *Unlabelled Transition Systems*.

- "Machine Semantics" Theoretical Computer Science (PMH)
- "From Causality to Computational Models" — Int. J. of Unconventional Comp. (PMH)

Originally developed to resolve an outstanding problem in QM computation

 "Quantum Circuits for Abstract Machine Computations" — Theoretical Computer Science (PMH)

but ended up being applied more widely; particularly, to explain why we see structures from *Linear Logic* & *Geometry of Interaction* in models of *automata* & *state machines*.

- "A categorical framework for finite state machines"
 - Mathematical Structures in Computer Science (PMH)

Motivation :

Currently being revisited for further applications . . . in several C.S. - related topics

An (unlabelled) **Transition System** is simply a set X of **configurations**, together with a discrete notion of causality.

Given a configuration $x \in X$, we can find the 'next configuration(s)'.

```
determinism x \mapsto x'
```

partiality $x \mapsto \{\}$

non-determinism $x \mapsto \{x'_1, x'_2, x'_3\}$

"Of course, this idea is hardly new, and examples can be found in any book on automata, formal languages, or programming languages " A Structural Approach to Operational Semantics — *G. Plotkin*

S.A.O.S. Aarhus Tech. Report (1981)

"This is too general a notion to produce any useful theory"

An (unlabelled) **Transition System** is simply a set X of **configurations**, together with a discrete notion of causality.

Given a configuration $x \in X$, we can find the 'next configuration(s)'.

```
determinism x \mapsto x'
```

partiality $x \mapsto \{\}$

non-determinism $x \mapsto \{x'_1, x'_2, x'_3\}$

"Of course, this idea is hardly new, and examples can be found in any book on automata, formal languages, or programming languages " A Structural Approach to Operational Semantics — *G. Plotkin*

S.A.O.S. Published version (2004)

"This is too general a notion to produce any useful theory"

An inessential simplification

We consider the case with partial, deterministic dynamics

A (countable) set X of **configurations**.

A (partial) transition function, $\mathcal{P}: X \to X$

(also known as the **primitive evolution**).

Partiality gives, for free, notions of start / halt configurations :

```
Starting config.s These satisfy \mathcal{P}^{-1}(s) = \{\}.
```

```
Halting config.s These satisfy \mathcal{P}(h) = \{\}.
```

Again, from 'A Structural Approach to Operational Semantics' :

"We <u>ignore the fact</u> that transitions only make sense at a certain level. What counts as a **single transition** may consist of **many steps** when viewed in more detail.

It is a matter of experience to choose the right definition."

Question :

Given transition systems (X, \mathcal{P}) and (X, \mathcal{Q}) on the same configuration set, when do they, *"describe the same computation at different levels of detail"*?

This is what we axiomatise, in order-theoretic terms.

The high-level vs. Low-level comparison

In his book '*Gödel, Escher, Bach*', D. Hofstadter describes what he calls "chunking", with the following example :

We intuitively think of "low-level" vs. "high-level" as a form of ordering!

The same computation, described at different levels of generality.

Basic definitions

Given a partial function $\eta: X \to X$, its transitive closure is the relation

 $\eta^+ \stackrel{def.}{=} \bigcup_{j=1}^{\infty} \eta^j$

The key definition

Given transition systems (X, η) and (X, μ) we say that

 η is a **refinement** of μ when $\mu \subseteq \eta^+ = \bigcup_{i=1}^{\infty} \eta^i$.

Operationally : η is a refinement of μ when, for all configurations $x \in X$,

$$\mu(\mathbf{x}) = \mathbf{y} \quad \Rightarrow \quad \exists \ \mathbf{N}_{\mathbf{x}} > \mathbf{0} \ \mathbf{s}.t. \ \eta^{\mathbf{N}_{\mathbf{x}}}(\mathbf{x}) = \mathbf{y}$$

Notation We suggestively write this as $\mu < \eta$.

Decomposing steps of transition systems

"Every single transition of (X, μ) may be decomposed into multiple transitions of (X, η) ."

Trivially, every partial function is a refinement of the nowhere-defined partial function $\bot(x) = \{\}$.

Different views of the same computation

Given a transition system (X, \mathcal{P}) , its **machine semantics** is the set of partial functions refined by \mathcal{P} .

$$[\mathcal{P}] \stackrel{\text{def.}}{=} \{\eta : X \to X \text{ such that } \eta < \mathcal{P}\}$$

— all **representations**, or 'partial descriptions' of the behaviour of (X, \mathcal{P}) .

This is closed under composition of partial functions, and hence a semigroup with a zero \perp .

Additional properties Reflexivity $\eta < \eta$ Transitivity $\nu < \mu$ and $\mu < \eta$ implies $\nu < \eta$

Two Questions :

- Do we have a partial order ?
- What is the relationship between composition and refinement?

We do not have the symmetry property

```
\eta < \mu and \mu < \eta does not imply \eta = \mu
```

The relation \prec is a preorder, but not a partial order.

Counterexample : the group \mathbb{Z}_3				
Configuration set $X = \{0, 1, 2\}$				
$\eta(\mathbf{x}) = \mathbf{x} + 1$	mod 3	,	$\mu(\mathbf{x}) = \mathbf{x} + 2$	mod 3

The obstacle to < being a partial order is *cyclic behaviour*.

Even worse, the usual preorder \rightarrow partial order quotient commonly causes a collapse to triviality.

Definitions : A transition system (X, η) is cycle-free iff, for all $x \in X$

 $\eta^{K}(x) \neq x \quad \forall K > 0$

When $|X| < \infty$ this is simply *nilpotency* of η .

For an arbitrary transition system, define its **cycle-free semantics** $\llbracket \mathcal{P} \rrbracket \subseteq \llbracket \mathcal{P} \rrbracket$ by

 $\llbracket \mathcal{P} \rrbracket \stackrel{\text{def.}}{=} \{ \eta < \mathcal{P} : (X, \eta) \text{ is cycle-free} \}$

— the collection of partial descriptions of (X, \mathcal{P}) that, "do not see cyclic behaviour".

Refinement then becomes a partial order

 $(\llbracket \mathcal{P} \rrbracket, \prec)$ is then a poset (but not necessarily a semigroup ...) with bottom element \bot .

The structure of cycle-free semantics

When (X, \mathcal{P}) is itself cycle-free, its *cycle-free semantics* $\llbracket \mathcal{P} \rrbracket$ has a particularly neat form.

- Cycle-free semantics and machine semantics coincide [[P]] = [P].
- $\llbracket \mathcal{P} \rrbracket$ is a semigroup with a partial order.
 - but order & composition are not compatible!
- There is a top element $P: X \to X$
- and a bottom element $\bot : X \to X$
- We have closure under finite meets and arbitrary joins
 - explicit formulæ to follow!

We arrive at a *locale* or *pointless topology*.

A special form of Heyting algebra, or Lindenbaum-Tarski algebra of an intuitionistic logic

(日)

Consider some finite subset $\{\eta_j\}_{j\in J} \subseteq \llbracket \mathcal{P} \rrbracket$.

Assume (w.l.o.g.) that each of these is defined at some configuration $x \in X$, so $\eta_i(x)$ exists, for all $j \in J$.

For each η_j , there exists a **unique** $N_j > 0$ such that $\eta_j(x) = \mathcal{P}^{N_j}(x)$.

The meet is defined in terms of the least common multiple $L_x = lcm(\{N_j\}_{j \in J})$ of these unique natural numbers:

$$\left(\bigwedge_{j\in J}\eta_j\right)(x) = \mathcal{P}^{L_x}(x)$$

As the set $\{N_i\}_{i \in J} \subseteq \mathbb{N}$ is **finite**, this least common multiple exists.

Alternatively, consider an **arbitrary** subset $\{\mu_k\}_{k \in \mathcal{K}} \subseteq [\mathcal{P}]$.

Consider some configuration $x \in X$ such that (again w.l.o.g.) $\mu_k(x)$ exists for all $k \in K$. For each μ_k , there exists a **unique** $M_k \in \mathbb{N}$ satisfying $\mu_k(x) = \mathcal{P}^{M_k}(x)$.

The join is defined in terms of the *greatest common divisor* of the countable set $G_x = gcd(\{M_k\}_{k \in K})$

$$\left(\bigvee_{k\in K}\mu_k\right)(x) = \mathcal{P}^{G_x}(x)$$

The greatest common divisor of $\{M_k\} \subseteq \mathbb{N}$ always exists.

Consider the cycle-free semantics of an arbitrary transition system (X, \mathcal{P}) .

- 0 (([[\mathcal{P}]], <) is a poset, with bottom element the nowhere-defined function \bot
- 2 The down-closure of every element is a locale.
- 0 It does not, in general, contain \mathcal{P} itself there is no top element.
- It is directed-complete
 - at least, assuming the axiom of choice.
- It has compact or finitary elements
 - these are the partial functions with finite support.
- Every element is the supremum of a chain of finitary elements.

Directed-completeness as Zeno's paradox ?

Consider an infinite chain $\eta_0 < \eta_1 < \eta_2 < \eta_3 < \dots$ This must have a supremum within $[\![\mathcal{P}]\!]$.

Unbounded infinite chains imply :

Computational paths with *infinitely many* distinct steps.

$$y\left(\mathcal{P}^{+}\right)x$$
 but $\mathcal{P}^{N}(x) \neq y \ \forall N > 0 \in \mathbb{M}$

Thus $(\llbracket \mathcal{P} \rrbracket, \prec)$ is chain-complete.

The key property we want is directed-completeness :

- A directed set D ⊆ [[P]] is one for which any d, d' ∈ D there exists some e ∈ D with d, d' < e.
- Iwamura's Lemma is a key tool of domain theory : "Chain-Completeness implies Directed-Completeness,"
 - a Lemma on Directed Sets (Tsurane Iwamura 1944)

Computing suprema: how & why we should do this.

Given a transition system (X, \mathcal{P}) , recall the start & halt configurations :

 $X_{start} = \{s : \mathcal{P}^{-1}(s)\} \text{ empty}\}$, $X_{halt} = \{s : \mathcal{P}(s) \text{ empty}\}$

Define the **boundary** to be $\Delta = X_{start} \cup X_{halt} \subseteq X$ and the **interior** to be its compliment, $\mathcal{O} = X \setminus \Delta$.

We wish to move from :

- The most detailed step-by-step description, $\mathcal{P} : X \to X$ to
- The most detailed start-halt description
 The 'largest' element of [[*P*]] defined solely on the boundary Δ.

19/29

Matrix form of transitions

Taking an arbitrary split of the configurations :

Let us divide the configuration set as disjoint union, $X = A \oplus B$:

Every $\eta \in [\mathcal{P}]$ can be written as a **matrix**

 $\eta = \left(\begin{array}{cc} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{array}\right)$

Where entries in distinct columns have disjoint support.

In digraph form :

Composition of partial functions (or relations, or partial injective functions, etc.) is given by the usual 'summing over paths' matrix formula :

_

The 'particle-style' categorical trace : another "summing over paths" construction

A partial function $Tr^B \begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix} = \eta_{11} \cup \bigcup_{j=0}^{\infty} \eta_{12} \eta_{22}^j \eta_{21}$

neter h	ines@\	ork ac uk
peterin	meae	orn.ac.ur

This is an example of a categorical trace :

- Abstract cat. definition introduced by A. Joyal, R. Street, D. Verity (1996) (See also S. Abramsky (1996) & M. Hyland (unpublished))
 - giving the particle-style trace on Relations with Disjoint Union as an example.
- Extended to other categories by various authors
 - Partial functions (E. Haghverdi 2001)
 - Partial Injective functions (PMH 1997)
 - prefigured by Lutz & Derby's JANUS programming language (1982)
 - Fixed-point operators (Hyland, Benton 2002)
 - Stochastic Relations & Markov processes (P. Panangaden 2007, 2009)
 - ...and many others.
- Seen in *slightly disguised form* as Girard's Resolution Formula, from his first three Geometry of Interaction papers (1989-94)

The trace, and refinement

Consider a transition system $(A \uplus B, \mathcal{P})$ and a representation $\eta \in [\mathcal{P}]$

The trace $Tr^B(\eta)$ satisfies

"Representations refine their traces" : Tr^B(η) < η.
 As a (trivial) consequence

$$\eta < \mu \implies Tr^{\mathcal{B}}(\eta) < \mu$$

"Traces preserve cycle-freeness"

$$\eta \in \llbracket \mathcal{P} \rrbracket \quad \Rightarrow \quad T\!r^{\mathcal{B}}(\eta) \in \llbracket \mathcal{P} \rrbracket$$

• Given some $\nu < \eta$ that is only defined on A then $\nu < Tr^{B}(\eta)$.

- Given $X = A \oplus B$,
- Let us denote the representations 'only defined on A' by [M]_A =

$$\{\mu : dom(\mu) \subseteq A \supseteq im(\mu)\} \subseteq [\mathcal{P}]$$

Whenever $[\mathcal{M}]_A$ is partially ordered :

$$Tr^{B}(\eta) = Sup\{\mu \in [\mathcal{M}]_{\mathcal{A}} : \mu < \eta\}$$

A significant special case

Let us split the configuration set into

The boundary Δ – the start-halt states.

The Interior O – the 'intermediate' states.

Definition The **black box semantics** $(\mathcal{P}) \subseteq [\mathcal{P}] \subseteq [\mathcal{P}]$ is the set of representations only defined on the boundary.

Partial functions that take start states to halt states

The most general of these is of course of interest!

• On (\mathcal{P}) , the refinement \prec becomes the *inclusion ordering* on partial functions:

f < g exactly when $f(x) = y \implies g(x) = y$

• $((\mathcal{P}), <)$ is a lattice-enriched semigroup, since $\eta \mu = \bot$, for all $\eta, \mu \in (\mathcal{P})$.

- Bottom element : the nowhere-defined partial function \perp .
- **Top element :** the trace $Tr^{\mathcal{O}}(\mathcal{P})$.

peter.hines@york.ac.uk

The categorical trace allows us to move from

- the most general step-by-step description of dynamics, to
- the most general start-halt description of the same system

in a single jump ... but sometimes, a single jump is too much.

Consider 'hiding the behaviour' one configuration at a time

Given a subset of configurations $\{x_0, x_1, x_2\} \subseteq X$. How does the chain

$$Tr^{\{x_0, x_1 x_2\}}(\eta) < Tr^{\{x_0, x_1\}}(\eta) < Tr^{\{x_0\}}(\eta) < \eta$$

relate to

$$\mathcal{T}\!r^{\{x_2\}}\left(\mathcal{T}\!r^{\{x_1\}}\left(\mathcal{T}\!r^{\{x_0\}}(\eta)\right)\right) \ < \ \mathcal{T}\!r^{\{x_1\}}\left(\mathcal{T}\!r^{\{x_0\}}(\eta)\right) \ < \ \mathcal{T}\!r^{\{x_0\}}(\eta) \ < \ \eta$$

Or indeed re-orderings of either of these ?

A key property of traces

A key property of traces is that they are **confluent**.

From Joyal, Street, & Verity (1996)

The vanishing II axiom states^a

$$Tr^{A}(Tr^{B}({}_{-})) = Tr^{B}(Tr^{A}({}_{-})) = Tr^{A \uplus B}({}_{-})$$

^aIn our setting, up to symmetry & inclusion maps.

The process of moving from :

- operational, or step-by-step descriptions of a transition system, to
- denotational or start-halt descriptions of the same system,

is *confluent* and can be carried out in a fine-grained manner.

A property equally at home in logic, lambda calculus, and automata theory :)

Image: Image:

Future directions / ongoing work

Logic / Category Theory What are the properties of traces on monoids (i.e. categories with only one object) ?

"On strict extensional reflexivity on compact closed categories "

- Outstanding Contributions in Logic (PMH 2013)

- Automata Theory Is there a notion of trace that preserves properties such as *planarity*? a property already studied in automata theory & logic.
- Information Theory Refinement describes the notion of "hiding information" about a computation.

Less info. $\eta < \mu$ more info.

Can we quantify how much, in information-theoretic terms?

- Number theory / Foundations of computation J. Conway's proof of undecidability / computational universality in elementary arithmetic is based on :
 - iterative problems on simple arithmetic operators,
 - a translation into Universal Register Machines.

Can we describe this in logical / categorical terms instead?