The Freyd–Schützenberger Completion

Jérémie Marquès IRIF (Paris)

GT DAAL

Rennes April 25, 2024 The Freyd–Schützenberger completion of a monoid (or category)

Appeared twice:

- Stable homotopy, P. Freyd, Proceedings of Conference on Categorical Algebra, La Jolla (1966).
- The Schützenberger category of a semigroup, A. Costa and B. Steinberg, Semigroup Forum (2015).

The Freyd–Schützenberger completion of a monoid (or category)

Appeared twice:

- Stable homotopy, P. Freyd, Proceedings of Conference on Categorical Algebra, La Jolla (1966).
- The Schützenberger category of a semigroup, A. Costa and B. Steinberg, Semigroup Forum (2015).

How does the Green-Rees local theory of finite monoids emerges from it?

A finite state machine: states X and actions $X \rightarrow X$.

Actions compose \rightsquigarrow a monoid $M \bigcirc X$.

```
A finite state machine: states X and actions X \rightarrow X.
```

```
Actions compose \rightsquigarrow a monoid M \bigcirc X.
```

How to representing algebraically the *images* of actions?

Examples:

 $- \operatorname{im}(f \circ g) \subseteq \operatorname{im}(f)$ $- \operatorname{im}(g) \twoheadrightarrow \operatorname{im}(f \circ g)$ Examples

Examples

Concrete description (1/3) – The category $\mathbb{D}(M)$ Objects of $\mathbb{D}(M) = im(f)$ where $f \in M$. Concrete description (1/3) – The category $\mathbb{D}(M)$ Objects of $\mathbb{D}(M) = im(f)$ where $f \in M$.

Morphisms $im(f) \rightarrow im(g)$ are the elements $\alpha \in fM \cap Mg$:

Concrete description (1/3) – The category $\mathbb{D}(M)$ Objects of $\mathbb{D}(M) = im(f)$ where $f \in M$.

Morphisms $im(f) \rightarrow im(g)$ are the elements $\alpha \in fM \cap Mg$:

Composition is given by gluing the squares:

We recover *M* as the endomorphisms $im(id) \rightarrow im(id)$.

Concrete description (2/3) – The factorization system

What is the image of $\alpha : im(f) \rightarrow im(g)$?

Concrete description (2/3) – The factorization system

What is the image of $\alpha : im(f) \rightarrow im(g)$?

Concrete description (2/3) – The factorization system

More formally:

Concrete description (3/3) – Green's relations

The two classes of the factorization system of $\mathbb{D}(\mathbf{C})$ are preorders:

- $-f \twoheadrightarrow \alpha$ if $fu = \alpha$ for some u: Green's \Re preorder, $f \geq_{\Re} \alpha$.
- $\alpha \rightarrow g$ if $\alpha = vg$ for some v: Green's \mathscr{L} preorder, $\alpha \leq_{\mathscr{L}} g$.

The arrows $f \rightarrow g$ are the α such that $f \longrightarrow \alpha \longrightarrow g$

Let
$$Sub(f) = \{ \alpha \mid \alpha \rightarrowtail f \}.$$

Lemma. If $f \cong g$, then $Sub(f) \cong Sub(g)$.

Let
$$Sub(f) = \{ \alpha \mid \alpha \rightarrow f \}.$$

Lemma. If $f \cong g$, then $Sub(f) \cong Sub(g)$.

Let
$$Sub(f) = \{ \alpha \mid \alpha \rightarrowtail f \}.$$

Lemma. If $f \cong g$, then $Sub(f) \cong Sub(g)$.

Let
$$Sub(f) = \{ \alpha \mid \alpha \rightarrowtail f \}.$$

Lemma.

If $f \cong g$, then $Sub(f) \cong Sub(g)$.

(1) $\mathbb{D}(M)$ is the free category with an epi-mono factorization system over M. (2) The evaluation $\mathbf{C} \to \mathbf{Set}^{[\mathbf{C},\mathbf{Set}]}$ extends to a full embedding $\mathbb{D}(\mathbf{C}) \subseteq \mathbf{Set}^{[\mathbf{C},\mathbf{Set}]}$. (1) $\mathbb{D}(M)$ is the free category with an epi-mono factorization system over M. (2) The evaluation $\mathbf{C} \to \mathbf{Set}^{[\mathbf{C},\mathbf{Set}]}$ extends to a full embedding $\mathbb{D}(\mathbf{C}) \subseteq \mathbf{Set}^{[\mathbf{C},\mathbf{Set}]}$.

Lemma.

(1)
$$f \rightarrow g$$
 iff $\operatorname{im}(\sigma_f) \subseteq \operatorname{im}(\sigma_g)$ for all $\sigma : M \rightarrow \operatorname{End}(X)$.
(2) $f \rightarrow g$ iff $\operatorname{ker}(\sigma_f) \subseteq \operatorname{ker}(\sigma_g)$ for all $\sigma : M \rightarrow \operatorname{End}(X)$.
 \downarrow
If $\sigma_f(x) = \sigma_f(y)$ then $\sigma_g(x) = \sigma_g(y)$.

Isomorphism classes

 $f \nleftrightarrow \alpha$ means $f \twoheadrightarrow \alpha$ and $\alpha \twoheadrightarrow f$; $\alpha \rightarrowtail g$ means $\alpha \rightarrowtail g$ and $g \rightarrowtail \alpha$ Isomorphisms $f \to g =$ the α such that $f \nleftrightarrow \alpha \rightarrowtail q$.

Isomorphism classes

 $f \nleftrightarrow \alpha$ means $f \twoheadrightarrow \alpha$ and $\alpha \twoheadrightarrow f$; $\alpha \rightarrowtail g$ means $\alpha \rightarrowtail g$ and $g \rightarrowtail \alpha$ Isomorphisms $f \to g =$ the α such that $f \nleftrightarrow \alpha \rightarrowtail g$.

Isomorphism classes

 $f \nleftrightarrow \alpha$ means $f \twoheadrightarrow \alpha$ and $\alpha \twoheadrightarrow f$; $\alpha \rightarrowtail g$ means $\alpha \rightarrowtail g$ and $g \rightarrowtail \alpha$ Isomorphisms $f \to g =$ the α such that $f \nleftrightarrow \alpha \rightarrowtail g$.

 $f \cong g$ is written $f \mathfrak{D} g$ in finite monoid theory.

Structure of the isomorphism classes

Structure of the isomorphism classes

All the information is contained in:

- the numbers |L| and |R|, and
- the group G of automorphisms.

Topological visualization of compositions

A composition $f_1 f_2 f_3$ in *M* becomes in $\mathbb{D}(M)$:

Topological visualization of compositions

A composition $f_1 f_2 f_3$ in *M* becomes in $\mathbb{D}(M)$:

Topological visualization of compositions

Forget the arrows and draw the boundaries of isomorphism classes.

For each non-invertible arrow:

We get pictures of the form:

Thank you!