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A λ-calculus crash course: Church encodings and simple types
A naive syntactic theory of functions:

f t ≈ f(t) λx. t ≈ (x 7→ t)

For f : x 7→ x2 + 1, we have f(42) = 422 + 1
⇝ Execution by rewriting, using substitution

(λx. t) u −→β t{x := u}

No primitive data types⇝ encode as functions

Simple types: specifications for λ-terms

• base type o (no constant of type o)
• A → B = “functions from A to B”

t : A (“t is of type A”) defined inductively

Exemple : even number of ‘a’s
t = λs. s not id true : Str{a,b}{o := Bool} → Bool

Booleans
true = λx. λy. x false = λx. λy. y

Bool = o → (o → o) = o → o → o
so that t : Bool ⇐⇒ t =β true or t =β false

(two arguments: x 7→ (y 7→ x) ∼= (x, y) 7→ x)

Church encoding of strings (1930s?)

abb = λfa. λfb. λx. fa (fb (fb x))

Str{a,b} = (o → o) → (o → o) → o → o

w : StrΣ therefore w : StrΣ{o := A} for all A

Theorem (Hillebrand & Kanellakis 1996)
The language L ⊆ Σ∗ is regular ⇐⇒
L is defined by some t : StrΣ{o := A} → Bool
in the simply typed λ-calculus

(A: arbitrary simple type, may depend on L)

t abb −→β abb not id true −→∗
β not (id (id true)) −→∗

β false
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Syntactically vs semantically regular languages of λ-terms

(Thanks for your attention!)

Rephrasing of [Hillebrand & Kanellakis 1996]
regular languages over Σ (usual sense) ∼=

syntactically regular lang. of λ-terms of type StrΣ

Definition
L ⊆ {u | u : A}/(=β) is syntactically regular

when it is defined by some t : A{o := B} → Bool

For languages of type A = StrΣ:
usual reg. ⇒ synt. reg. programming exercise
synt. reg. ⇒ sem. reg. take Q = JBK{0,1} …
sem. reg. ⇒ usual for w ∈ Σ∗, compute JwK by DFA

Theorem (Moreau & N., CSL’24)
∀A, syntactically regular ⇐⇒ semantically regular

(⇒) same proof as before!
(⇐) “represent” elements of JAKQ by λ-terms of type

A{o := (o|Q| → o)} using logical relations

Algebraic recognition of regular languages:
Σ∗ morphism

−−−−−−−→ finite monoid → {yes, no}

Definition (Salvati 2009)
Semantically regular language of λ-terms:

{u | u : A}/(=β)
J−KQ−−−−−−−→ JAKQ → {yes, no}

Naive semantics of simply typed λ-terms:
t : A =⇒ JtKQ ∈ JAKQ where

JoKQ = Q (an arbitrary set)

JA → BKQ = JAKQ → JBKQ = JBKJAKQ
Q

• compositional by def., e.g. Jt uKQ = JtKQ (JuKQ)
+ invariant modulo =β

• Q finite =⇒ every JAKQ finite
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