On regular languages of \-terms

Lé Thanh Diing (Tito) Nguyén — nltd@nguyentito.eu — Ecole normale supérieure de Lyon
joint work with Vincent Moreau (IRIF, Université Paris Cité)

26 April 2024, Journées du GT DAAL

1/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions:

ft = f(t) M.t & (x> t)

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions:
ft = f(t) M.t & (x> t)

Forf:x — x> + 1, we have f(42) = 422 + 1

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions:
ft = f(t) M.t & (x> t)

Forf:x — x> + 1, we have f(42) = 422 + 1
~+ Execution by rewriting, using substitution

(M. t) u —pg tH{x:=u}

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions:
ft = f(t) M.t & (x> t)

Forf:x — x> + 1, we have f(42) = 422 + 1
~+ Execution by rewriting, using substitution

(M. t) u —pg tH{x:=u}

No primitive data types ~+ encode as functions

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y

Forf:x — x> + 1, we have f(42) = 422 + 1
~+ Execution by rewriting, using substitution

(M. t) u —pg tH{x:=u}

No primitive data types ~+ encode as functions

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y

Forf:x — x> + 1, we have f(42) = 422 + 1

E tion b iti i bstituti
~» Execution by rewriting, using substitution (i esmiraatie 22 (15 2) = () 1o )
(M. t) u —pg tH{x:=u}

No primitive data types ~+ encode as functions

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y

Forf:x — x> + 1, we have f(42) = 422 + 1

~+ Execution by rewriting, using substitution
(two arguments: x — (¥ — x) = (x,y) — x)

(A t) u —g H{x :=u} Church encoding of strings (1930s?)

No primitive data types ~+ encode as functions abb = M. My Mx. fa (fy (fp X))

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y

Forf:x — x> + 1, we have f(42) = 422 + 1

~+ Execution by rewriting, using substitution
(two arguments: x — (¥ — x) = (x,y) — x)

(A t) u —g H{x :=u} Church encoding of strings (1930s?)

No primitive data types ~+ encode as functions abb = M. My Mx. fa (fy (fp X))

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y
Forf:x — x> + 1, we have f(42) = 422 + 1

~+ Execution by rewriting, using substitution

(two arguments: x — (¥ — x) = (x,y) — x)
(Ax. ) u —>g Hx = u} Church encoding of strings (1930s?)

abb = M. My Ax. fa (fy (fy x))

No primitive data types ~+ encode as functions

Simple types: specifications for A-terms

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y

Forf:x — x> + 1, we have f(42) = 422 + 1
~+ Execution by rewriting, using substitution

(two arguments: x — (¥ — x) = (x,y) — x)
(Ax. ) u —>g Hx = u} Church encoding of strings (1930s?)

abb = M. My Ax. fa (fy (fy x))

No primitive data types ~+ encode as functions

Simple types: specifications for A-terms

e base type o (no constant of type o)

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y

Forf:x — x> + 1, we have f(42) = 422 + 1
~+ Execution by rewriting, using substitution

(two arguments: x — (¥ — x) = (x,y) — x)
(M. t) u —pg tH{x:=u}

Church encoding of strings (1930s?)
abb = M. My Ax. fa (fy (fy x))

No primitive data types ~+ encode as functions

Simple types: specifications for A-terms

e base type o (no constant of type o)

e A — B = “functions from A to B”

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y
Forf:x — x> + 1, we have f(42) = 422 + 1

~+ Execution by rewriting, using substitution

(two arguments: x — (¥ — x) = (x,y) — x)
(M. t) u —pg tH{x:=u}

Church encoding of strings (1930s?)
abb = M. My Ax. fa (fy (fy x))

No primitive data types ~+ encode as functions

Simple types: specifications for A-terms

e base type o (no constant of type o)
e A — B = “functions from A to B”
t: A (“tis of type A”) defined inductively

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y
Bool=0—(0—>0)=0-—0—0
Forf:x — x> + 1, we have f(42) = 422 + 1

~+ Execution by rewriting, using substitution

(two arguments: x — (¥ — x) = (x,y) — x)
(M. t) u —pg tH{x:=u}

Church encoding of strings (1930s?)
abb = M. My Ax. fa (fy (fy x))

No primitive data types ~+ encode as functions

Simple types: specifications for A-terms

e base type o (no constant of type o)
e A — B = “functions from A to B”
t: A (“tis of type A”) defined inductively

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y

Bool=0—(0—>0)=0-—0—0
Forf:x — x> + 1, we have f(42) = 422 + 1 so thatt: Bool <= t =g trueort =g false
~+ Execution by rewriting, using substitution

(two arguments: x — (¥ — x) = (x,y) — x)
(M. t) u —pg tH{x:=u}

Church encoding of strings (1930s?)
abb = M. My Ax. fa (fy (fy x))

No primitive data types ~+ encode as functions

Simple types: specifications for A-terms

e base type o (no constant of type o)
e A — B = “functions from A to B”
t: A (“tis of type A”) defined inductively

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y

Bool=0—(0—>0)=0-—0—0
Forf:x — x> + 1, we have f(42) = 422 + 1 so thatt: Bool <= t =g trueort =g false
~+ Execution by rewriting, using substitution

(two arguments: x — (¥ — x) = (x,y) — x)
(M. t) u —pg tH{x:=u}

Church encoding of strings (1930s?)
abb = M. My Ax. fa (fy (fy x))

S =
Simple types: specifications for A-terms oy = (@2 0) > (0= 0) »o—o

No primitive data types ~+ encode as functions

e base type o (no constant of type o)
e A — B = “functions from A to B”
t: A (“tis of type A”) defined inductively

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive syntactic theory of functions: Booleans

ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y

Bool=0—(0—>0)=0-—0—0
Forf:x — x> + 1, we have f(42) = 422 + 1 so thatt: Bool <= t =g trueort =g false
~+ Execution by rewriting, using substitution

(two arguments: x — (¥ — x) = (x,y) — x)
(M. t) u —pg tH{x:=u}

Church encoding of strings (1930s?)
abb = M. My Ax. fa (fy (fy x))

S =
Simple types: specifications for A-terms oy = (@2 0) > (0= 0) »o—o

No primitive data types ~+ encode as functions

e o W : Stry, therefore W : Strx {0 := A} for all A

e A — B = “functions from A to B”
t: A (“tis of type A”) defined inductively

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive synfactic theory of functions:
ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y
Bool=0—(0—>0)=0-—0—0

Forf:x — x> + 1, we have f(42) = 422 + 1 so thatt: Bool <= t =g trueort =g false

~+ Execution by rewriting, using substitution

(two arguments: x — (¥ — x) = (x,y) — x)

Church encoding of strings (1930s?)
abb = M. My Ax. fa (fy (fy x))

(M. t) u —pg tH{x:=u}

No primitive data types ~+ encode as functions

S =
Simple types: specifications for A-terms oy = (@2 0) > (0= 0) »o—o
e o W : Stry, therefore W : Strx {0 := A} for all A

e A — B = “functions from A to B”

Theorem (Hillebrand & Kanellakis 1996)
t: A (“tis of type A”) defined inductively

The language L C 3* is regular <=
L is defined by some t : Strs;{o := A} — Bool
in the simply typed A-calculus

(A: arbitrary simple type, may depend on L)

abb not id true — not (id (id true)) — false

2/3



A )-calculus crash course: Church encodings and simple types

A naive synfactic theory of functions:
ft ~ f(t) Mt x (xeb) true = Ax. Ay. x false = Ax. Ay. y
Bool=0—(0—>0)=0-—0—0

Forf:x — x> + 1, we have f(42) = 422 + 1 so thatt: Bool <= t =g trueort =g false

~+ Execution by rewriting, using substitution
(two arguments: x — (¥ — x) = (x,y) — x)

Church encoding of strings (1930s?)
abb = M. My Ax. fa (fy (fy x))
S =
Simple types: specifications for A-terms oy = (@2 0) > (0= 0) »o—o

(M. t) u —pg tH{x:=u}

No primitive data types ~+ encode as functions

e o W : Stry, therefore W : Strx {0 := A} for all A
e A — B = “functions from A to B” Theorem (Hillebrand & Kanellakis 1996)
t: A (“tis of type A”) defined inductively The language L C X* is regular <=
L is defined by some t : Strs;{o := A} — Bool
Exemple : even number of ‘a’s

in the simply typed A-calculus
t = As. s not id true : Stry, ;3 {0 := Bool} — Bool

(A: arbitrary simple type, may depend on L)

t abb — g abb not id true — not (id (id true)) — false

2/3



Syntactically vs semantically regular languages of \-terms

Rephrasing of [Hillebrand & Kanellakis 1996 ]
regular languages over ¥ (usual sense) 2
syntactically regular lang. of A-terms of type Stryx;

Definition
L C{u|u:A}/(=p) is syntactically regular
when it is defined by some ¢ : A{o := B} — Bool

3/3



Syntactically vs semantically regular languages of \-terms

Rephrasing of [Hillebrand & Kanellakis 1996] Algebraic recognition of regular languages:
regular languages over ¥ (usual sense) 2 o

syntactically regular lang. of A-terms of type Stryx;

morphism
E finite monoid — {yes,no}

Definition

L C{u|u:A}/(=p) is syntactically regular
when it is defined by some ¢ : A{o := B} — Bool

3/3



Syntactically vs semantically regular languages of \-terms

Rephrasing of [Hillebrand & Kanellakis 1996] Algebraic recognition of regular languages:
regular languages over ¥ (usual sense) 2 o

syntactically regular lang. of A-terms of type Stryx;

DRI )

Semantically regular language of \-terms:

morphism
E finite monoid — {yes,no}

L C{u|u:A}/(=p) is syntactically regular

when it is defined by some ¢ : A{o := B} — Bool I-lo
{u|u:A}/(=g) —— [Alg — {yes,no}

3/3



Syntactically vs semantically regular languages of \-terms

Rephrasing of [Hillebrand & Kanellakis 1996] Algebraic recognition of regular languages:
regular languages over ¥ (usual sense) 2 o

syntactically regular lang. of A-terms of type Stryx;

DRI )

Semantically regular language of \-terms:

morphism
E finite monoid — {yes,no}

L C{u|u:A}/(=p) is syntactically regular

when it is defined by some ¢ : A{o := B} — Bool I-lo
{u|u:A}/(=g) —— [Alg — {yes,no}

Naive semantics of simply typed A-terms:
t:A = [t]g € [A], where

[l = Q (an arbitrary set)

[Alg

[A — Blg = [Alg — [Blg = [Blg

3/3



Syntactically vs semantically regular languages of \-terms

Rephrasing of [Hillebrand & Kanellakis 1996] Algebraic recognition of regular languages:
regular languages over ¥ (usual sense) 2 o

syntactically regular lang. of A-terms of type Stryx;

o —

Semantically regular language of \-terms:

morphism
E finite monoid — {yes,no}

L C{u|u:A}/(=p) is syntactically regular

when it is defined by some ¢ : A{o := B} — Bool I-lo
{u|u:A}/(=g) —— [Alg — {yes,no}

Naive semantics of simply typed A-terms:
t:A = [t]g € [A], where

[l = Q (an arbitrary set)

[Alg

[A — Blg = [Alg — [Blg = [Blg

e compositional by def., e.g. [tu] o = [t ([ulg)
+ invariant modulo =g

e Qfinite = every [A] finite

3/3



Rephrasing of [Hillebrand & Kanellakis 1996 ]
regular languages over ¥ (usual sense) 2
syntactically regular lang. of A-terms of type Stryx;

Definition
L C{u|u:A}/(=p) is syntactically regular

when it is defined by some ¢ : A{o := B} — Bool
For languages of type A = Strx:
usual reg. = synt. reg. programming exercise
synt. reg. = sem. reg. take Q = [[B]]{U,l}
sem. reg. = usual for w € ¥*, compute [w] by DFA

Syntactically vs semantically regular languages of \-terms

Algebraic recognition of regular languages:
=+ finite monoid — {yes, no}

Definition (Salvati 2009)

Semantically regular language of \-terms:

morphism

{ulu:A}/(=p) ﬂ—» [Alg — {yes,no}

Naive semantics of simply typed A-terms:
t:A = [t]g € [A], where

[l = Q (an arbitrary set)

[Alg

[A — Blg = [Alg — [Blg = [Blg

e compositional by def., e.g. [tu] o = [t ([ulg)
+ invariant modulo =g

e Qfinite = every [A] finite

3/3



Rephrasing of [Hillebrand & Kanellakis 1996 ]
regular languages over ¥ (usual sense) 2
syntactically regular lang. of A-terms of type Stryx;

L C{u|u:A}/(=p) is syntactically regular
when it is defined by some ¢ : A{o := B} — Bool
For languages of type A = Strx:
usual reg. = synt. reg. programming exercise
synt. reg. = sem. reg. take Q = [[B]]{U,l}
sem. reg. = usual for w € ¥*, compute [w] by DFA

Theorem (Moreau & N., CSL'24)
VA, syntactically regular <= semantically regular

Syntactically vs semantically regular languages of \-terms

Algebraic recognition of regular languages:
=+ finite monoid — {yes, no}

Definition (Salvati 2009)

Semantically regular language of \-terms:

morphism

{ulu:A}/(=p) ﬂ—» [Alg — {yes,no}

Naive semantics of simply typed A-terms:
t:A = [t]g € [A], where

[l = Q (an arbitrary set)

[Alg

[A — Blg = [Alg — [Blg = [Blg

e compositional by def., e.g. [tu] o = [t]g ([ulg)
+ invariant modulo =g

e Qfinite = every [A] finite

3/3



Syntactically vs semantically regular languages of \-terms

Rephrasing of [Hillebrand & Kanellakis 1996 ]
regular languages over ¥ (usual sense) 2
syntactically regular lang. of A-terms of type Stryx;

DRI )

Semantically regular language of \-terms:

Algebraic recognition of regular languages:
E*

morphism
E finite monoid — {yes,no}

L C{u|u:A}/(=p) is syntactically regular

when it is defined by some ¢ : A{o := B} — Bool [-lo
{ulu:A}/(=p) ——— [Alg = {yes,no}
For languages of type A = Strx:

usual reg. = synt. reg. programming exercise Naive semantics of simply typed A-terms:

synt. reg. => sem. reg. take Q = [B] o} - t:A = [t]g € [A], where

sem. reg. = usual for w € ¥*, compute [w] by DFA
[l = Q (an arbitrary set)

Theorem (Moreau & N., CSL'24)
VA, syntactically regular <= semantically regular

[Alg

[A — Blg = [Alg — [Blg = [Blg

e compositional by def., e.g. [tu] o = [t]g ([ulg)

=) same proof as before! . .
(=) P + invariant modulo =g

(«=) “represent” elements of [A]; by A-terms of type

A{o := (0!Q — 0)} using logical relations * Qfinite = every [A] finite

3/3



Syntactically vs semantically regular languages of \-terms

Rephrasing of [Hillebrand & Kanellakis 1996 ]
regular languages over ¥ (usual sense) 2
syntactically regular lang. of A-terms of type Stryx;

o —

Semantically regular language of \-terms:

Algebraic recognition of regular languages:
E*

morphism
E finite monoid — {yes,no}

L C{u|u:A}/(=p) is syntactically regular

when it is defined by some ¢ : A{o := B} — Bool [-lo
{ulu:A}/(=p) ——— [Alg = {yes,no}
For languages of type A = Strx:

usual reg. = synt. reg. programming exercise Naive semantics of simply typed A-terms:

synt. reg. => sem. reg. take Q = [B] o} - t:A = [t]g € [A], where

sem. reg. = usual for w € ¥*, compute [w] by DFA
[l = Q (an arbitrary set)

Theorem (Moreau & N., CSL'24)
VA, syntactically regular <= semantically regular

[Alg

[A — Blg = [Alg — [Blg = [Blg

e compositional by def., e.g. [tu] o = [t]g ([ulg)

=) same proof as before! . .
(=) P + invariant modulo =g

(«=) “represent” elements of [A]; by A-terms of type

A{o := (0!Q — 0)} using logical relations * Qfinite = every [A] finite

3/3



