On regular languages of λ -terms

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito .eu – École normale supérieure de Lyon joint work with Vincent Moreau (IRIF, Université Paris Cité)

26 April 2024, Journées du GT DAAL

A naive syntactic theory of functions:

$$ft \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

A naive syntactic theory of functions:

$$ft \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For
$$f: x \mapsto x^2 + 1$$
, we have $f(42) = 42^2 + 1$

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

A naive syntactic theory of functions:

$$ft \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types \leadsto encode as functions

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Booleans

$$\mathtt{true} = \lambda x. \ \lambda y. \ x \qquad \mathtt{false} = \lambda x. \ \lambda y. \ y$$

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types \leadsto encode as functions

Booleans

$$\mathtt{true} = \lambda x. \ \lambda y. \ x \qquad \mathtt{false} = \lambda x. \ \lambda y. \ y$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

A naive syntactic theory of functions:

$$ft \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types \leadsto encode as functions

Booleans

$$\mathtt{true} = \lambda x.\; \lambda y.\; x \qquad \mathtt{false} = \lambda x.\; \lambda y.\; y$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types \leadsto encode as functions

Booleans

$$\mathtt{true} = \lambda x. \ \lambda y. \ x \qquad \mathtt{false} = \lambda x. \ \lambda y. \ y$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\overline{abb}$$
 not id true $\longrightarrow_{\beta}^{*}$ not (id (id true)) $\longrightarrow_{\beta}^{*}$ false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \rightsquigarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types \leadsto encode as functions

Simple types: specifications for λ -terms

Booleans

$$\mathtt{true} = \lambda x. \ \lambda y. \ x \qquad \mathtt{false} = \lambda x. \ \lambda y. \ y$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\overline{abb}$$
 not id true \longrightarrow_{eta}^* not (id (id true)) \longrightarrow_{eta}^* false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Simple types: specifications for λ -terms

• base type *o* (no constant of type *o*)

Booleans

$$\mathtt{true} = \lambda x. \ \lambda y. \ x \qquad \mathtt{false} = \lambda x. \ \lambda y. \ y$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\overline{abb}$$
 not id true \longrightarrow_{eta}^* not (id (id true)) \longrightarrow_{eta}^* false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Simple types: specifications for λ -terms

- base type *o* (no constant of type *o*)
- $A \rightarrow B =$ "functions from A to B"

Booleans

$$\mathtt{true} = \lambda x. \ \lambda y. \ x \qquad \mathtt{false} = \lambda x. \ \lambda y. \ y$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\overline{abb}$$
 not id true \longrightarrow_{eta}^* not (id (id true)) \longrightarrow_{eta}^* false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Simple types: specifications for λ -terms

- base type *o* (no constant of type *o*)
- $A \rightarrow B =$ "functions from A to B"

t: A ("t is of type A") defined inductively

Booleans

$$\mathtt{true} = \lambda x. \ \lambda y. \ x \qquad \mathtt{false} = \lambda x. \ \lambda y. \ y$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\overline{abb}$$
 not id true \longrightarrow_{eta}^* not (id (id true)) \longrightarrow_{eta}^* false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Simple types: specifications for λ -terms

- base type *o* (no constant of type *o*)
- $A \rightarrow B =$ "functions from A to B"

t: A ("t is of type A") defined inductively

Booleans

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\overline{abb}$$
 not id true \longrightarrow_{eta}^* not (id (id true)) \longrightarrow_{eta}^* false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Simple types: specifications for λ -terms

- base type *o* (no constant of type *o*)
- $A \rightarrow B =$ "functions from A to B"

t: A ("t is of type A") defined inductively

Booleans

$$\begin{array}{ll} \mathtt{true} = \lambda x. \; \lambda y. \; x & \mathtt{false} = \lambda x. \; \lambda y. \; y \\ \mathtt{Bool} = o \to (o \to o) = o \to o \to o \\ \mathtt{so} \; \mathtt{that} \; t : \mathtt{Bool} \; \Longleftrightarrow \; t =_{\beta} \; \mathtt{true} \; \mathtt{or} \; t =_{\beta} \; \mathtt{false} \end{array}$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\overline{abb}$$
 not id true \longrightarrow_{eta}^* not (id (id true)) \longrightarrow_{eta}^* false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Simple types: specifications for λ -terms

- base type *o* (no constant of type *o*)
- $A \rightarrow B =$ "functions from A to B"

t: A ("t is of type A") defined inductively

Booleans

$$\begin{array}{ll} \mathtt{true} = \lambda x. \; \lambda y. \; x & \mathtt{false} = \lambda x. \; \lambda y. \; y \\ \mathtt{Bool} = o \to (o \to o) = o \to o \to o \\ \mathtt{so} \; \mathtt{that} \; t : \mathtt{Bool} \; \Longleftrightarrow \; t =_{\beta} \mathtt{true} \; \mathtt{or} \; t =_{\beta} \mathtt{false} \end{array}$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\operatorname{Str}_{\{a,b\}} = (o \to o) \to (o \to o) \to o \to o$$

$$\overline{abb}$$
 not id true \longrightarrow_{eta}^* not (id (id true)) \longrightarrow_{eta}^* false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Simple types: specifications for λ -terms

- base type *o* (no constant of type *o*)
- $A \rightarrow B =$ "functions from A to B"

t: A ("t is of type A") defined inductively

Booleans

 $\begin{array}{ll} \mathtt{true} = \lambda x. \ \lambda y. \ x & \mathtt{false} = \lambda x. \ \lambda y. \ y \\ \mathtt{Bool} = o \to (o \to o) = o \to o \to o \\ \mathtt{so} \ \mathtt{that} \ t : \mathtt{Bool} \iff t =_{\beta} \mathtt{true} \ \mathtt{or} \ t =_{\beta} \mathtt{false} \end{array}$

(two arguments: $x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$)

Church encoding of strings (1930s?)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\operatorname{Str}_{\{a,b\}} = (o \to o) \to (o \to o) \to o \to o$$

 $\overline{w}: \mathtt{Str}_\Sigma \text{ therefore } \overline{w}: \mathtt{Str}_\Sigma \{o:=A\} \text{ for all } A$

$$\overline{abb}$$
 not id true \longrightarrow_{eta}^* not (id (id true)) \longrightarrow_{eta}^* false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Simple types: specifications for λ -terms

- base type *o* (no constant of type *o*)
- $A \rightarrow B =$ "functions from A to B"

t: A ("t is of type A") defined inductively

Booleans

$$\begin{array}{ll} \mathtt{true} = \lambda x. \ \lambda y. \ x & \mathtt{false} = \lambda x. \ \lambda y. \ y \\ \mathtt{Bool} = o \to (o \to o) = o \to o \to o \\ \mathtt{so} \ \mathtt{that} \ t : \mathtt{Bool} \iff t =_{\beta} \mathtt{true} \ \mathtt{or} \ t =_{\beta} \mathtt{false} \end{array}$$

(two arguments:
$$x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$$
)

Church encoding of strings (1930s?)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\operatorname{Str}_{\{a,b\}} = (o \to o) \to (o \to o) \to o \to o$$

 $\overline{w}: \mathtt{Str}_{\Sigma} \ \text{therefore} \ \overline{w}: \mathtt{Str}_{\Sigma} \{o:=A\} \ \text{for all} \ A$

Theorem (Hillebrand & Kanellakis 1996)

The language $L\subseteq \Sigma^*$ is regular \iff L is defined by some $t: \mathtt{Str}_\Sigma\{o:=A\} \to \mathtt{Bool}$ in the simply typed λ -calculus

(A: arbitrary simple type, may depend on L)

$$\overline{abb}$$
 not id true \longrightarrow_{eta}^* not (id (id true)) \longrightarrow_{eta}^* false

A naive syntactic theory of functions:

$$f t \approx f(t)$$
 $\lambda x. t \approx (x \mapsto t)$

For $f: x \mapsto x^2 + 1$, we have $f(42) = 42^2 + 1$ \Rightarrow Execution by rewriting, using substitution

$$(\lambda x. t) u \longrightarrow_{\beta} t\{x := u\}$$

No primitive data types → encode as functions

Simple types: specifications for λ -terms

- base type *o* (no constant of type *o*)
- $A \rightarrow B =$ "functions from A to B"

t: A ("t is of type A") defined inductively

Exemple: even number of 'a's

$$t=\lambda s.\ s\ \mathtt{not}\ \mathtt{id}\ \mathtt{true}:\mathtt{Str}_{\{a,b\}}\{o:=\mathtt{Bool}\} o\mathtt{Bool}$$

Booleans

 $\begin{array}{ll} \mathtt{true} = \lambda x. \ \lambda y. \ x & \mathtt{false} = \lambda x. \ \lambda y. \ y \\ \mathtt{Bool} = o \to (o \to o) = o \to o \to o \\ \mathtt{so} \ \mathtt{that} \ t : \mathtt{Bool} \iff t =_{\beta} \mathtt{true} \ \mathtt{or} \ t =_{\beta} \mathtt{false} \end{array}$

(two arguments: $x \mapsto (y \mapsto x) \cong (x, y) \mapsto x$)

Church encoding of strings (1930s?)

$$\overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x))$$

$$\operatorname{Str}_{\{a,b\}} = (o \to o) \to (o \to o) \to o \to o$$

 $\overline{w}: \mathtt{Str}_\Sigma \ \text{therefore} \ \overline{w}: \mathtt{Str}_\Sigma \{o:=A\} \ \text{for all} \ A$

Theorem (Hillebrand & Kanellakis 1996)

The language $L\subseteq \Sigma^*$ is regular \iff L is defined by some $t: \mathbf{Str}_\Sigma\{o:=A\} \to \mathsf{Bool}$ in the simply typed λ -calculus

(A: arbitrary simple type, may depend on L)

$$t \; \overline{abb} \longrightarrow_{\beta} \overline{abb} \; \mathrm{not} \; \mathrm{id} \; \mathrm{true} \longrightarrow_{\beta}^* \mathrm{not} \; (\mathrm{id} \; (\mathrm{id} \; \mathrm{true})) \longrightarrow_{\beta}^* \mathrm{false}$$

Rephrasing of [Hillebrand & Kanellakis 1996]

regular languages over Σ (usual sense) \cong syntactically regular lang. of λ -terms of type \mathtt{Str}_Σ

Definition

 $L\subseteq \{u\mid u:A\}/(=_{eta}) ext{ is } syntactically regular \\ ext{when it is defined by some } t:A\{o:=B\} o ext{Bool}$

Rephrasing of [Hillebrand & Kanellakis 1996]

regular languages over Σ (usual sense) \cong syntactically regular lang. of λ -terms of type ${\tt Str}_\Sigma$

Definition

 $L\subseteq\{u\mid u:A\}/(=_{eta}) ext{ is } syntactically regular when it is defined by some } t:A\{o:=B\} o ext{Bool}$

Algebraic recognition of regular languages:

 $\Sigma^* \xrightarrow{-morphism} \text{finite monoid} \to \{yes, no\}$

Rephrasing of [Hillebrand & Kanellakis 1996]

regular languages over Σ (usual sense) \cong syntactically regular lang. of λ -terms of type \mathtt{Str}_Σ

Definition

 $L \subseteq \{u \mid u : A\}/(=_{\beta})$ is *syntactically regular* when it is defined by some $t : A\{o := B\} \to \texttt{Bool}$

Algebraic recognition of regular languages:

$$\Sigma^* \xrightarrow{\text{morphism}} \text{finite monoid} \to \{\text{yes}, \text{no}\}$$

Definition (Salvati 2009)

Semantically regular language of λ -terms:

$$\{u \mid u : A\}/(=_{\beta}) \xrightarrow{\mathbb{I}-\mathbb{I}_{Q}} \mathbb{I}A\mathbb{I}_{Q} \to \{\text{yes, no}\}$$

Rephrasing of [Hillebrand & Kanellakis 1996]

regular languages over Σ (usual sense) \cong syntactically regular lang. of λ -terms of type ${\tt Str}_\Sigma$

Definition

 $L\subseteq \{u\mid u:A\}/(=_{eta}) ext{ is } syntactically regular when it is defined by some } t:A\{o:=B\} o ext{Bool}$

Algebraic recognition of regular languages:

$$\Sigma^* \xrightarrow{\text{morphism}} \text{finite monoid} \to \{\text{yes}, \text{no}\}$$

Definition (Salvati 2009)

Semantically regular language of λ -terms:

$$\{u \mid u : A\}/(=_{\beta}) \xrightarrow{\mathbb{I}-\mathbb{I}_{Q}} \mathbb{I}A\mathbb{I}_{Q} \to \{\text{yes, no}\}$$

$$t: A \implies \llbracket t \rrbracket_Q \in \llbracket A \rrbracket_Q \text{ where }$$

$$[\![o]\!]_Q = Q$$
 (an arbitrary set)

$$[\![A \to B]\!]_Q = [\![A]\!]_Q \to [\![B]\!]_Q = [\![B]\!]_Q^{[\![A]\!]_Q}$$

Rephrasing of [Hillebrand & Kanellakis 1996]

regular languages over Σ (usual sense) \cong syntactically regular lang. of λ -terms of type \mathtt{Str}_Σ

Definition

 $L \subseteq \{u \mid u : A\}/(=_{\beta})$ is syntactically regular when it is defined by some $t : A\{o := B\} \to \mathsf{Bool}$

Algebraic recognition of regular languages:

$$\Sigma^* \xrightarrow{\text{morphism}} \text{finite monoid} \to \{\text{yes}, \text{no}\}$$

Definition (Salvati 2009)

Semantically regular language of λ -terms:

$$\{u \mid u : A\}/(=_{\beta}) \xrightarrow{\mathbb{I}-\mathbb{I}_{Q}} \mathbb{I}A\mathbb{I}_{Q} \to \{\text{yes, no}\}$$

$$t: A \implies \llbracket t \rrbracket_Q \in \llbracket A \rrbracket_Q \text{ where }$$

$$[\![o]\!]_Q = Q$$
 (an arbitrary set)

$$[\![A \to B]\!]_Q = [\![A]\!]_Q \to [\![B]\!]_Q = [\![B]\!]_Q^{[\![A]\!]_Q}$$

- compositional by def., e.g. $[\![t\,u]\!]_Q = [\![t]\!]_Q ([\![u]\!]_Q) + \text{invariant modulo} =_\beta$
- Q finite \implies every $[\![A]\!]_O$ finite

Rephrasing of [Hillebrand & Kanellakis 1996]

regular languages over Σ (usual sense) \cong syntactically regular lang. of λ -terms of type ${\tt Str}_\Sigma$

Definition

$$L \subseteq \{u \mid u : A\}/(=_{\beta})$$
 is syntactically regular when it is defined by some $t : A\{o := B\} \to \mathsf{Bool}$

For languages of type $A = Str_{\Sigma}$:

usual reg.
$$\Rightarrow$$
 synt. reg. programming exercise

synt. reg.
$$\Rightarrow$$
 sem. reg. take $Q = [\![B]\!]_{\{0,1\}} \dots$

sem. reg.
$$\Rightarrow$$
 usual for $w \in \Sigma^*$, compute $[\![\overline{w}]\!]$ by DFA

Algebraic recognition of regular languages:

$$\Sigma^* \xrightarrow{\text{morphism}} \text{finite monoid} \to \{\text{yes}, \text{no}\}$$

Definition (Salvati 2009)

Semantically regular language of λ -terms:

$${u \mid u : A}/{(=_{\beta})} \xrightarrow{\mathbb{I}-\mathbb{I}_{Q}} {\mathbb{I}}A\mathbb{I}_{Q} \to {\text{yes, no}}$$

$$t: A \implies \llbracket t \rrbracket_Q \in \llbracket A \rrbracket_Q \text{ where }$$

$$\llbracket o \rrbracket_Q = Q \text{ (an arbitrary set)}$$

$$[\![A \to B]\!]_Q = [\![A]\!]_Q \to [\![B]\!]_Q = [\![B]\!]_Q^{[\![A]\!]_Q}$$

- *compositional* by def., e.g. $[\![t\,u]\!]_Q = [\![t]\!]_Q ([\![u]\!]_Q) + \text{invariant modulo} =_\beta$
- Q finite \Longrightarrow every $[\![A]\!]_Q$ finite

Rephrasing of [Hillebrand & Kanellakis 1996]

 $\mbox{regular languages over } \Sigma \mbox{ (usual sense)} \cong \\ syntactically \mbox{\it regular lang.} \mbox{ of } \lambda\mbox{-terms of type } \mbox{Str}_\Sigma$

Definition

$$L\subseteq\{u\mid u:A\}/(=_{eta}) ext{ is } syntactically regular }$$
 when it is defined by some $t:A\{o:=B\} o {\tt Bool}$

For languages of type $A = Str_{\Sigma}$:

 $\textbf{usual reg.} \Rightarrow \textbf{synt. reg.} \ \ \text{programming exercise}$

synt. reg.
$$\Rightarrow$$
 sem. reg. take $Q = [\![B]\!]_{\{0,1\}} \dots$

sem. reg. \Rightarrow **usual** for $w \in \Sigma^*$, compute $[\![\overline{w}]\!]$ by DFA

Theorem (Moreau & N., CSL'24)

 $\forall A$, syntactically regular \iff semantically regular

Algebraic recognition of regular languages:

$$\Sigma^* \xrightarrow{\text{morphism}} \text{finite monoid} \to \{\text{yes}, \text{no}\}$$

Definition (Salvati 2009)

Semantically regular language of λ -terms:

$$\{u \mid u : A\}/(=_{\beta}) \xrightarrow{\mathbb{I}-\mathbb{I}_{Q}} \mathbb{I}A\mathbb{I}_{Q} \to \{\text{yes, no}\}$$

$$t: A \implies \llbracket t \rrbracket_Q \in \llbracket A \rrbracket_Q \text{ where }$$

$$\llbracket o \rrbracket_Q = Q$$
 (an arbitrary set)

$$[\![A \to B]\!]_Q = [\![A]\!]_Q \to [\![B]\!]_Q = [\![B]\!]_Q^{[\![A]\!]_Q}$$

- $\begin{array}{l} \bullet \ \ compositional \ \ \text{by def., e.g.} \ \llbracket t \, u \rrbracket_Q = \llbracket t \rrbracket_Q \left(\llbracket u \rrbracket_Q \right) \\ + \ \ \text{invariant modulo} =_{\beta} \end{array}$
- Q finite \Longrightarrow every $[\![A]\!]_Q$ finite

Rephrasing of [Hillebrand & Kanellakis 1996]

regular languages over Σ (usual sense) \cong syntactically regular lang. of λ -terms of type ${\tt Str}_\Sigma$

Definition

$$L\subseteq \{u\mid u:A\}/(=_{eta}) ext{ is } syntactically regular }$$
 when it is defined by some $t:A\{o:=B\} o {\tt Bool}$

For languages of type $A = Str_{\Sigma}$:

usual reg.
$$\Rightarrow$$
 synt. reg. programming exercise

synt. reg.
$$\Rightarrow$$
 sem. reg. take $Q = [\![B]\!]_{\{0,1\}} \dots$

sem. reg.
$$\Rightarrow$$
 usual for $w \in \Sigma^*$, compute $[\![\overline{w}]\!]$ by DFA

Theorem (Moreau & N., CSL'24)

 $\forall A$, syntactically regular \iff semantically regular

- (\Rightarrow) same proof as before!
- (\Leftarrow) "represent" elements of $[\![A]\!]_Q$ by λ -terms of type $A\{o:=(o^{|Q|}\to o)\}$ using logical relations

Algebraic recognition of regular languages:

$$\Sigma^* \xrightarrow{\text{morphism}} \text{finite monoid} \to \{\text{yes}, \text{no}\}$$

Definition (Salvati 2009)

Semantically regular language of λ -terms:

$$\{u \mid u : A\}/(=_{\beta}) \xrightarrow{\mathbb{I}-\mathbb{I}_{Q}} \mathbb{I}A\mathbb{I}_{Q} \to \{\text{yes, no}\}$$

$$t: A \implies \llbracket t \rrbracket_Q \in \llbracket A \rrbracket_Q \text{ where }$$

$$\llbracket o \rrbracket_Q = Q \text{ (an arbitrary set)}$$

$$[\![A \to B]\!]_Q = [\![A]\!]_Q \to [\![B]\!]_Q = [\![B]\!]_Q^{[\![A]\!]_Q}$$

- $\begin{array}{l} \bullet \ \ compositional \ \ \text{by def., e.g.} \ \llbracket t \, u \rrbracket_Q = \llbracket t \rrbracket_Q \left(\llbracket u \rrbracket_Q \right) \\ + \ \ \text{invariant modulo} =_{\beta} \end{array}$
- Q finite \implies every $[\![A]\!]_Q$ finite

Rephrasing of [Hillebrand & Kanellakis 1996]

regular languages over Σ (usual sense) \cong syntactically regular lang. of λ -terms of type Str_Σ

Definition

$$L \subseteq \{u \mid u : A\}/(=_{\beta})$$
 is syntactically regular when it is defined by some $t : A\{o := B\} \to \texttt{Bool}$

For languages of type $A = Str_{\Sigma}$:

usual reg.
$$\Rightarrow$$
 synt. reg. programming exercise

synt. reg.
$$\Rightarrow$$
 sem. reg. take $Q = [\![B]\!]_{\{0,1\}} \dots$

sem. reg.
$$\Rightarrow$$
 usual for $w \in \Sigma^*$, compute $[\![\overline{w}]\!]$ by DFA

Theorem (Moreau & N., CSL'24)

 $\forall A, syntactically regular \iff semantically regular$

- (\Rightarrow) same proof as before!
- (\Leftarrow) "represent" elements of $[\![A]\!]_Q$ by λ -terms of type $A\{o:=(o^{|Q|}\to o)\}$ using logical relations

Algebraic recognition of regular languages:

$$\Sigma^* \xrightarrow{\text{morphism}} \text{finite monoid} \to \{\text{yes}, \text{no}\}$$

Definition (Salvati 2009)

Semantically regular language of λ -terms:

$$\{u \mid u : A\}/(=_{\beta}) \xrightarrow{\llbracket - \rrbracket_{Q}} \llbracket A \rrbracket_{Q} \to \{\text{yes, no}\}$$

$$t: A \implies \llbracket t \rrbracket_Q \in \llbracket A \rrbracket_Q \text{ where }$$

$$\llbracket o \rrbracket_Q = Q$$
 (an arbitrary set)

$$[\![A \to B]\!]_Q = [\![A]\!]_Q \to [\![B]\!]_Q = [\![B]\!]_Q^{[\![A]\!]_Q}$$

- $\begin{array}{l} \bullet \ \ compositional \ \ \text{by def., e.g.} \ \llbracket t \, u \rrbracket_Q = \llbracket t \rrbracket_Q \left(\llbracket u \rrbracket_Q \right) \\ + \ \ \text{invariant modulo} =_{\beta} \end{array}$
- Q finite \implies every $[\![A]\!]_Q$ finite