Weighted automata: To be decidable, or not to be decidable... that is the question.

Laure Daviaud
University of East Anglia

First part: weighted automata

First part: weighted automata

Second part: weighted automata

First part: weighted automata

→ General stuff, a bit of a survey around decidability

Second part: weighted automata

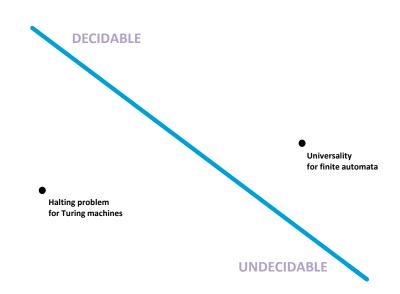
First part: weighted automata

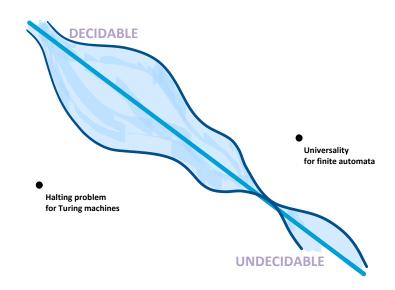
---> General stuff, a bit of a survey around decidability

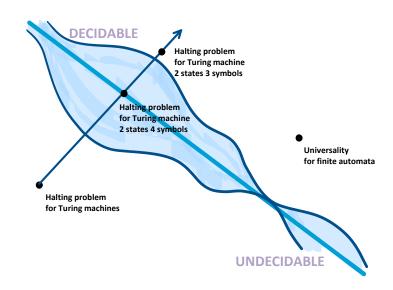
Second part: weighted automata

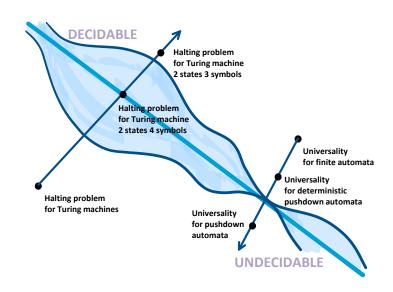
---- A specific result on max-plus automata

Part I









Weighted automata

Weighted automata:

- Finite non deterministic automata with weights (e.g. real values) on transitions
- Computes a function:

$$\Sigma^* \to \mathbb{R}$$

Weighted automata

Weighted automata:

- Finite non deterministic automata with weights (e.g. real values) on transitions
- Computes a function:

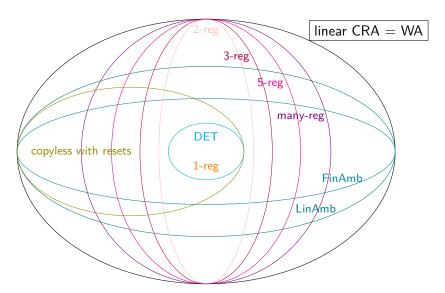
$$\Sigma^* \to \mathbb{R}$$

Cost register automata:

- Deterministic automaton with write-only registers storing weights (e.g. real values)
- Computes a function:

$$\Sigma^* \to \mathbb{R}$$

Classes



• Can I compute the same function with a simpler model? Determinisation, Ambiguity, Register complexity...

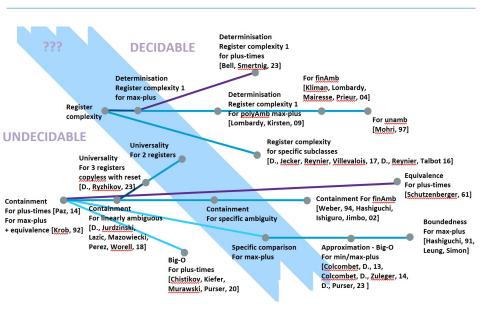
- Can I compute the same function with a simpler model? Determinisation, Ambiguity, Register complexity...
- Can I compare two models? Equivalence, Containement, Big-O...

- Can I compute the same function with a simpler model? Determinisation, Ambiguity, Register complexity...
- Can I compare two models?
 Equivalence, Containement, Big-O...
- Can I describe the function computed by a model? Boundedness, Universality, Approximation, Value...

- Can I compute the same function with a simpler model? Determinisation, Ambiguity, Register complexity...
- Can I compare two models?
 Equivalence, Containement, Big-O...
- Can I describe the function computed by a model? Boundedness, Universality, Approximation, Value...

$$\longrightarrow$$
 (\mathbb{R} , +, \times) \longrightarrow (\mathbb{N} , max, +)

Some results - this is not exhaustive!



Part II

Big-O for max-plus

Big-O Problem

Given two max-plus automata computing functions f and g, is f big-O of g?

There exists C such that for all $w \in \Sigma^*$, $f(w) \leq Cg(w) + C$

Big-O for max-plus

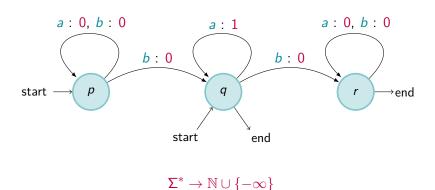
Big-O Problem

Given two max-plus automata computing functions f and g, is f big-O of g?

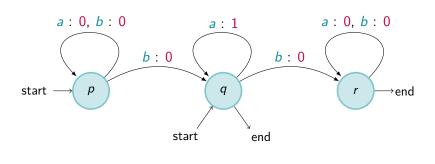
There exists C such that for all $w \in \Sigma^*$, $f(w) \leq Cg(w) + C$

Theorem [D., Purser] -

The big-O problem is PSPACE-complete for max-plus automata.

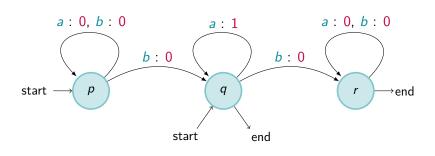


lacksquare weights in $\mathbb N$



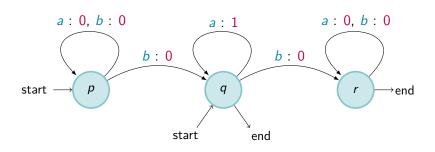
$$\Sigma^* o \mathbb{N} \cup \{-\infty\}$$

- ullet weights in ${\mathbb N}$
- . run ightarrow sum the weights



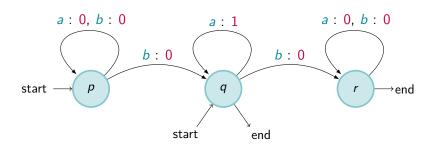
$$\Sigma^* \to \mathbb{N} \cup \{-\infty\}$$

- weights in N
- ullet run ightarrow sum the weights
- word ightarrow max of the accepting runs labelled by the word (or $-\infty$)



$$\Sigma^* \to \mathbb{N} \cup \{-\infty\}$$

- weights in N
- ullet run ightarrow sum the weights
- . word \to max of the accepting runs labelled by the word (or $-\infty$) What is computed on aaabbaabbaaaaabaa?



$$\Sigma^* \to \mathbb{N} \cup \{-\infty\}$$

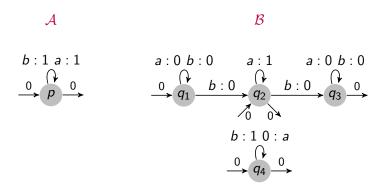
- weights in N
- ullet run ightarrow sum the weights
- word \rightarrow max of the accepting runs labelled by the word (or $-\infty$) What is computed on aaabbaabbbaaaaabaa? $w \mapsto \max$ number of consecutive a's in w

Same example with registers

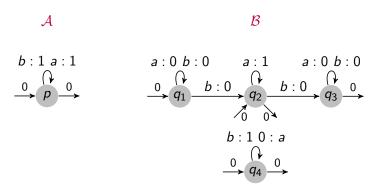
$$a: \begin{cases} X := X + 1 \\ Y := Y \end{cases}$$

$$b: \begin{cases} X := 0 \\ Y := \max(X, Y) \end{cases}$$

Our running example



Our running example



 \mathcal{B} : $w \mapsto \max$ of number of b's and number of consecutive a's in w

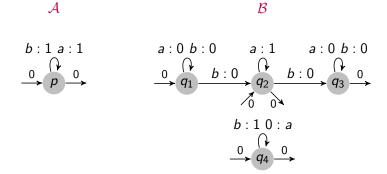
And matrices...

with $(I)_{a_1} = (I)_{a_2} = (I)_{a_4} = (F)_{a_2} = (F)_{a_3} = (F)_{a_4} = 0$

14/24

Witnesses

Witnesses



Key sequence: $(a^n b)^n a^n$

Witnesses

$$\mathcal{A}$$
 \mathcal{B}

$$b: 1 \ a: 1 \qquad \qquad a: 0 \ b: 0$$

$$0 \qquad p \qquad 0$$

$$0 \qquad q_1 \qquad b$$

Key sequence: $(a^n b)^n a^n$

$$\left(n^{2}, \begin{pmatrix} 0 & n & n & - \\ - & - & n & - \\ - & - & 0 & - \\ - & - & - & n \end{pmatrix}\right)$$

Witnesses

$$\begin{pmatrix} n^2, \begin{pmatrix} 0 & n & n & -\\ - & - & n & -\\ - & - & 0 & -\\ - & - & - & n \end{pmatrix} \end{pmatrix}$$

Becomes:

$$\left(\infty, \begin{pmatrix} 0 & 1 & 1 & -\\ - & - & 1 & -\\ - & - & 0 & -\\ - & - & - & 1 \end{pmatrix}\right)$$

- —: no run at all
- 0: all runs have weight 0
- 1: some runs with positive weights but not the largest growth rate
- ∞: runs with largest growth rate

Aim: Decide some property P on an abstract model M

Aim: Decide some property P on an abstract model M

 \longrightarrow Find the right finite algebraic structure S to represent M

Aim: Decide some property P on an abstract model M

 \longrightarrow Find the right finite algebraic structure S to represent M

→ Find the right operations on S to capture P (no more, no less)

Aim: Decide some property P on an abstract model M

- → Find the right finite algebraic structure S to represent M
- → Find the right operations on S to capture P (no more, no less)
- \longrightarrow Identify witnesses, present in S if and only if M satisfies P

$$a = (p, 1, p, \begin{pmatrix} 0 & - & - & - \\ - & 1 & - & - \\ - & - & 0 & - \\ - & - & - & 0 \end{pmatrix}) \text{ and } b = (p, 1, p, \begin{pmatrix} 0 & 0 & - & - \\ - & - & 0 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

$$a = (p, 1, p, \begin{pmatrix} 0 & - & - & - \\ - & 1 & - & - \\ - & - & 0 & - \\ - & - & - & 0 \end{pmatrix}) \text{ and } b = (p, 1, p, \begin{pmatrix} 0 & 0 & - & - \\ - & - & 0 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

$$ab = (p, 1, p, \begin{pmatrix} 0 & 0 & - & - \\ - & - & 1 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix}) \quad bb = (p, 1, p, \begin{pmatrix} 0 & 0 & 0 & - \\ - & - & 0 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

 \longrightarrow Sharp

$$a^{\#} = (p, \infty, p, \begin{pmatrix} 0 & - & - & - \\ - & \infty & - & - \\ - & - & 0 & - \\ - & - & - & 0 \end{pmatrix}) \quad a^{\#}b = (p, \infty, p, \begin{pmatrix} 0 & 0 & - & - \\ - & - & \infty & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

$$a^{\#}ba^{\#}b = (p, \infty, p, \begin{pmatrix} 0 & 0 & \infty & - \\ - & - & \infty & - \\ - & - & 0 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

$$(a^{\#}ba^{\#}b)^{\#} = (p, \infty, p, \begin{pmatrix} 0 & 0 & \infty & - \\ - & - & \infty & - \\ - & - & 0 & - \\ - & - & - & \infty \end{pmatrix})$$

 \longrightarrow Flat

$$(a^{\#}ba^{\#}b)^{\flat} = (p, \infty, p, \begin{pmatrix} 0 & 0 & 1 & - \\ - & - & 1 & - \\ - & - & 0 & - \\ - & - & - & 1 \end{pmatrix})$$

Aim: Decide whether \mathcal{A} big-O of \mathcal{B}

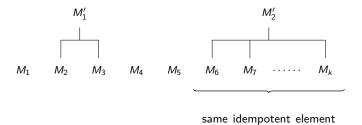
- \longrightarrow Find the right finite algebraic structure S to represent M
- \longrightarrow Find the right operations on S to capture P (no more, no less)
 - $(p, \overline{x_a}, q, \overline{M(a)})$ closed under product, sharp and flat
- \longrightarrow Identify witnesses, present in S if and only if M satisfies P

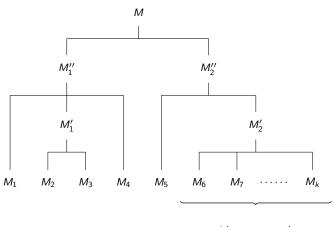
with:

- p initial, q final
- $x = \infty$
- . $IMF \neq \infty$

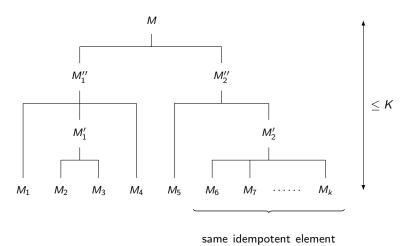
In any finite semigroup...

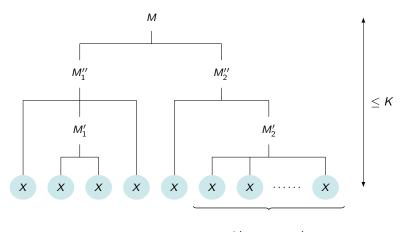
 M_1 M_2 M_3 M_4 M_5 M_6 M_7 \cdots M



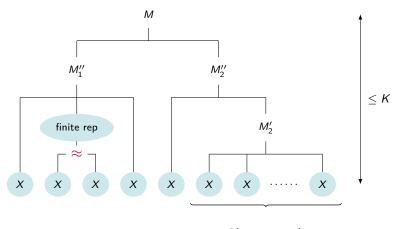


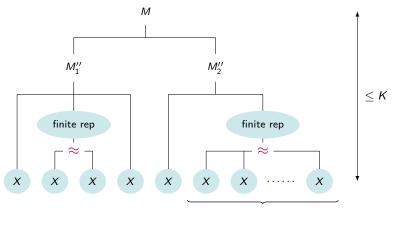
same idempotent element

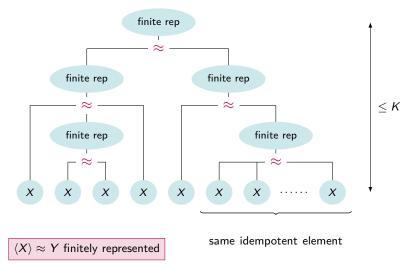




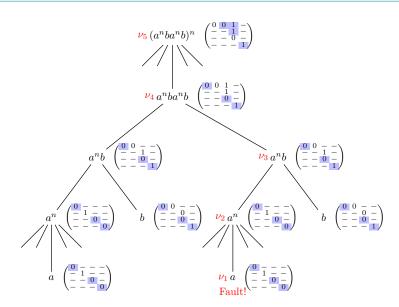
same idempotent element







Just a fancy picture



The End (or just the beginning)

Theorem [D., Purser]

The big-O problem is PSPACE-complete for max-plus automata.

Proposition [D., Purser, Tcheng]

Construction of witnesses with increasing complexity.