
Reasoning about subwords and
subsequences

Ph. Schnoebelen

Laboratoire Méthodes Formelles (LMF) – ENS Paris-Saclay

GT DAAL – Apr. 2024 – Rennes

OUTLINE THE TALK

Subwords not so well understood algorithmically

Let me tell you about a few simple and not-so-simple problems:

1. Subwords in compressed words

2. The Post embedding problem

3. Computing with subword-closed languages

4. Solving subword constraints

5. Describing words by their subwords

2/58

WORDS AND THEIR SUBWORDS

AB is a prefix of ABRACADABRA

BRA is a factor of ABRACADABRA (also a suffix)
ABBA is a subword of ABRACADABRA

3/58

WORDS AND THEIR SUBWORDS

AB is a prefix of ABRACADABRA

BRA is a factor of ABRACADABRA (also a suffix)
ABBA is a subword of ABRACADABRA

Subwords and factors are both very natural and fundamental notions.

But mathematically and algorithmically, subwords are trickier than
factors.

3/58

WORDS AND THEIR SUBWORDS

AB is a prefix of ABRACADABRA

BRA is a factor of ABRACADABRA (also a suffix)
ABBA is a subword of ABRACADABRA

Subwords and factors are both very natural and fundamental notions.

But mathematically and algorithmically, subwords are trickier than
factors.

E.g. ABRACADABRA has 12 different prefixes, 55 different factors and
1304 different subwords.

3/58

WORDS AND THEIR SUBWORDS

AB is a prefix of ABRACADABRA

BRA is a factor of ABRACADABRA (also a suffix)
ABBA is a subword of ABRACADABRA

Subwords and factors are both very natural and fundamental notions.

But mathematically and algorithmically, subwords are trickier than
factors.

E.g. ABRACADABRA has 12 different prefixes, 55 different factors and
1304 different subwords.

My own perspective is not language theory or combinatorics. I want
to show you a few problems on subwords that appear “naturally” in
formal methods and program verification.

3/58

FIRST PUZZLE: COUNTING

How do you compute the number of
distinct subwords of w?

(Does ABRACADABRA really has 1304 different subwords?)

4/58

FIRST PUZZLE: COUNTING

Build the subword automaton!

A

B

C

R

B

C

R

A

C

R

A
A

CA

C

A

(here for ABRACA)

4/58

FIRST PUZZLE: COUNTING

Build the subword automaton. And count!

52

28
A 14

B

2

C

7

R

B

C

R

4

A

C

R

A
1

A

C
A

C

A

(here for ABRACA)

4/58

SECOND PUZZLE: TESTING

How do you check that uď v?
(Here and later ď denotes the subword ordering)

5/58

SECOND PUZZLE: TESTING

How do you check that uď v?
(Here and later ď denotes the subword ordering)

OK, the problem is trivial. Compute leftmost embedding:

B A C A B A B

?

A B B A

v :

u :

Actually this is easier than checking whether u is a factor of v.

5/58

SECOND PUZZLE: TESTING

How do you check that uď v?
(Here and later ď denotes the subword ordering)

OK, the problem is trivial. Compute leftmost embedding:

B A C A B A B

?

A B B A

v :

u :

Actually this is easier than checking whether u is a factor of v.

However I had to check whether Uď V for compressed words. . .

5/58

SLP-COMPRESSED WORDS

Straight Line Programs are the standard mathematical model for
compressed “words” (i.e., text files, databases, genomes, log files, ..)

Equivalently, SLP ” acyclic deterministic context-free grammar.

X0 := c h a
X1 := X0 n t
X2 := X0 s s e
X3 := X1X2 r
X4 := X2 u r s a X3

An SLP expands into a single word, of potentially exponential length.

6/58

SLP-COMPRESSED WORDS

Straight Line Programs are the standard mathematical model for
compressed “words” (i.e., text files, databases, genomes, log files, ..)

Equivalently, SLP ” acyclic deterministic context-free grammar.

X0 := c h a
X1 := X0 n t
X2 := X0 s s e
X3 := X1X2 r
X4 := X2 u r s a X3

cha sse ursa cha nt cha sse r

X0 X0 X0

X1X2 X2

X3

X4

An SLP expands into a single word, of potentially exponential length.

6/58

SLP-COMPRESSED WORDS

Many efficient algorithms exist for SLPs (i.e., no expansion):
‚ Compute Xrℓs, letter at position ℓ
‚ Count number of occurrences of letter a
‚ Build SLP for Xrn ¨ ¨ ¨ms

‚ Decide if X P LpAq for some FSA A
‚ Find all occurrences of X as a factor of Y (pattern matching)
‚ Find largest palindrome inside X, etc.

See 2012 survey by Markus Lohrey

7/58

SLP-COMPRESSED WORDS

Many efficient algorithms exist for SLPs (i.e., no expansion):
‚ Compute Xrℓs, letter at position ℓ
‚ Count number of occurrences of letter a
‚ Build SLP for Xrn ¨ ¨ ¨ms

‚ Decide if X P LpAq for some FSA A
‚ Find all occurrences of X as a factor of Y (pattern matching)
‚ Find largest palindrome inside X, etc.

See 2012 survey by Markus Lohrey

However checking whether Xď Y is PP-hard (Lifshits, Lohrey)

7/58

SLP-COMPRESSED WORDS

Many efficient algorithms exist for SLPs (i.e., no expansion):
‚ Compute Xrℓs, letter at position ℓ
‚ Count number of occurrences of letter a
‚ Build SLP for Xrn ¨ ¨ ¨ms

‚ Decide if X P LpAq for some FSA A
‚ Find all occurrences of X as a factor of Y (pattern matching)
‚ Find largest palindrome inside X, etc.

See 2012 survey by Markus Lohrey

However checking whether Xď Y is PP-hard (Lifshits, Lohrey)

Luckily my verification problem only used SLPs of a particular form,
and I could rely on:

Theorem
‚ Deciding whether Xď u

n1
1 ¨ ¨ ¨u

nk
k where X is a SLP, u1, . . . ,uk are

words and n1, . . . ,nk are integers can be done in polynomial-time.
‚ Same for deciding whether un1

1 ¨ ¨ ¨u
nk
k ď X.

7/58

SLP-COMPRESSED WORDS

Checking whether Xď Y is PP-hard (Lifshits, Lohrey)

Luckily my verification problem only used SLPs of a particular form,
and I could rely on:

Theorem
‚ Deciding whether Xď u

n1
1 ¨ ¨ ¨u

nk
k where X is a SLP, u1, . . . ,uk are

words and n1, . . . ,nk are integers can be done in polynomial-time.
‚ Same for deciding whether un1

1 ¨ ¨ ¨u
nk
k ď X.

Perspectives. Many interesting open problems in this area. More
generally: what are good algorithms for testing embedding over
various data structures?

7/58

THIRD PROBLEM: POST CORRESPONDENCE

Post Correspondence Problem
. . . but with subwords!

Joint work with Pierre Chambart & Prateek Karandikar

8/58

A NEW PROBLEM

Post Correspondence Problem:
Input: two morphisms u,v : Σ˚ Ñ Γ˚

Question: is there x P Σ` with upxq “ vpxq?

Post Embedding Problem:
Input: . . . same . . .
Question: is there x P Σ` with upxq ď vpxq?

Regular Post Embedding Problem:
Input: . . . and a regular R P RegpΣq

Question: is there x P R with upxq ď vpxq?

Equivalently: given a rational relation RĎ Γ˚ ˆ Γ˚, does RX ď“ H?

(Side puzzle: Is ď X ě a rational relation?)

9/58

A NEW PROBLEM

Post Correspondence Problem:
Input: two morphisms u,v : Σ˚ Ñ Γ˚

Question: is there x P Σ` with upxq “ vpxq?

Post Embedding Problem:
Input: . . . same . . .
Question: is there x P Σ` with upxq ď vpxq?

Regular Post Embedding Problem:
Input: . . . and a regular R P RegpΣq

Question: is there x P R with upxq ď vpxq?

Equivalently: given a rational relation RĎ Γ˚ ˆ Γ˚, does RX ď “ H?

(Side puzzle: Is ď X ě a rational relation?)

9/58

A NEW PROBLEM

Post Correspondence Problem:
Input: two morphisms u,v : Σ˚ Ñ Γ˚

Question: is there x P Σ` with upxq “ vpxq?

Post Embedding Problem:
Input: . . . same . . .
Question: is there x P Σ` with upxq ď vpxq?

Regular Post Embedding Problem:
Input: . . . and a regular R P RegpΣq

Question: is there x P R with upxq ď vpxq?

Equivalently: given a rational relation RĎ Γ˚ ˆ Γ˚, does RX ď “ H?

(Side puzzle: Is ď X ě a rational relation?)

9/58

MOTIVATIONS: UCS (UNIDIRECTIONAL CHANNEL

SYSTEMS)

UCSs appeared while classifying networks mixing reliable and lossy
fifo channels. Now has applications in logics for querying graphs
[Barceló, Figueira, Libkin, LICS 2012].

Main question: Is reachability decidable for UCSs?

NB: Reachability is decidable if you change direction of one channel
(ring with a lossy component). It is undecidable if you add a third
channel in any way.

10/58

MOTIVATIONS: UCS (UNIDIRECTIONAL CHANNEL

SYSTEMS)

UCSs appeared while classifying networks mixing reliable and lossy
fifo channels. Now has applications in logics for querying graphs
[Barceló, Figueira, Libkin, LICS 2012].

Main question: Is reachability decidable for UCSs?

NB: Reachability is decidable if you change direction of one channel
(ring with a lossy component). It is undecidable if you add a third
channel in any way.

10/58

UCS CAN SOLVE PEP

Let pu1,v1q,pu2,v2q, . . . be a Post Embedding instance.

Sender guesses solution, Receiver validates it.

NB: Sender can guess a solution in regular R.

NB: Reciprocally, PEP can express the existence of a UCS run.

Our plan: Check relevant literature (mostly Finnish) for answer. Was
naive.

11/58

UCS CAN SOLVE PEP

Let pu1,v1q,pu2,v2q, . . . be a Post Embedding instance.

Sender guesses solution, Receiver validates it.

NB: Sender can guess a solution in regular R.

NB: Reciprocally, PEP can express the existence of a UCS run.

Our plan: Check relevant literature (mostly Finnish) for answer. Was
naive.

11/58

UCS CAN SOLVE PEP

Let pu1,v1q,pu2,v2q, . . . be a Post Embedding instance.

Sender guesses solution, Receiver validates it.

NB: Sender can guess a solution in regular R.

NB: Reciprocally, PEP can express the existence of a UCS run.

Our plan: Check relevant literature (mostly Finnish) for answer. Was
naive.

11/58

PEP WITH R“ Σ` IS TRIVIAL

Assume upx1x2q ď vpx1x2q. Then upx1q ď vpx1q or upx2q ď vpx2q

Hence a PEP instance has a solution iff it has a length-one solution

Σ 1 2 3
vi ac aaba cbab
ui aa baba ca

With R“ Σ`, PEP is decidable in logspace

Trickier with R “ Σ`.

Side puzzle: Take R def
“ Σ˚1Σ˚. Is there a solution in R?

Answer: ??

12/58

PEP WITH R“ Σ` IS TRIVIAL

Assume upx1x2q ď vpx1x2q. Then upx1q ď vpx1q or upx2q ď vpx2q

Hence a PEP instance has a solution iff it has a length-one solution

Σ 1 2 3
vi ac aaba cbab
ui aa baba ca

With R“ Σ`, PEP is decidable in logspace

Trickier with R “ Σ`.

Side puzzle: Take R def
“ Σ˚1Σ˚. Is there a solution in R?

Answer: ??

12/58

PEP WITH R“ Σ` IS TRIVIAL

Assume upx1x2q ď vpx1x2q. Then upx1q ď vpx1q or upx2q ď vpx2q

Hence a PEP instance has a solution iff it has a length-one solution

Σ 1 2 3
vi ac aaba cbab
ui aa baba ca

With R“ Σ`, PEP is decidable in logspace

Trickier with R “ Σ`.

Side puzzle: Take R def
“ Σ˚1Σ˚. Is there a solution in R?

Answer: ??

12/58

PROVING THE ABSENCE OF SOLUTIONS

Take R def
“ Σ˚1Σ˚ for vi ac aaba cbab

ui aa baba ca

Lem 1. pa`bqux ď vx for all x P Σ˚:
– x“ ε: ? Would need aď ε or bď ε.
– x“ 1.y: pa`bqaauy ď ac vy? Would need aauy ď vy.
– x“ 2.y: pa`bqbabauy ď aaba vy? Would need bauy ď vy.
– x“ 3.y: pa`bqcauy ď cbab vy? Would need cauy ď vy.

Lem 2. ux ď b˚vx for all x P R:
– x“ ε: not in R
– x“ 1.y: aauy ď b˚ac vy? Would need auy ď vy.
– x“ 2.y: babauy ď b˚aaba vy? Would need uy ď vy with y P R.
– x“ 3.y: cauy ď b˚cbab vy? Would need uy ď b vy with y P R.

Coro. There is no x P R with upxq ď vpxq

13/58

PROVING THE ABSENCE OF SOLUTIONS

Take R def
“ Σ˚1Σ˚ for vi ac aaba cbab

ui aa baba ca

Lem 1. pa`bqux ď vx for all x P Σ˚:
– x“ ε: ? Would need aď ε or bď ε.
– x“ 1.y: pa`bqaauy ď ac vy? Would need aauy ď vy.
– x“ 2.y: pa`bqbabauy ď aaba vy? Would need bauy ď vy.
– x“ 3.y: pa`bqcauy ď cbab vy? Would need cauy ď vy.

Lem 2. ux ď b˚vx for all x P R:
– x“ ε: not in R
– x“ 1.y: aauy ď b˚ac vy? Would need auy ď vy.
– x“ 2.y: babauy ď b˚aaba vy? Would need uy ď vy with y P R.
– x“ 3.y: cauy ď b˚cbab vy? Would need uy ď b vy with y P R.

Coro. There is no x P R with upxq ď vpxq

13/58

PROVING THE ABSENCE OF SOLUTIONS

Take R def
“ Σ˚1Σ˚ for vi ac aaba cbab

ui aa baba ca

Lem 1. pa`bqux ď vx for all x P Σ˚:
– x“ ε: ? Would need aď ε or bď ε.
– x“ 1.y: pa`bqaauy ď ac vy? Would need aauy ď vy.
– x“ 2.y: pa`bqbabauy ď aaba vy? Would need bauy ď vy.
– x“ 3.y: pa`bqcauy ď cbab vy? Would need cauy ď vy.

Lem 2. ux ď b˚vx for all x P R:
– x“ ε: not in R
– x“ 1.y: aauy ď b˚ac vy? Would need auy ď vy.
– x“ 2.y: babauy ď b˚aaba vy? Would need uy ď vy with y P R.
– x“ 3.y: cauy ď b˚cbab vy? Would need uy ď b vy with y P R.

Coro. There is no x P R with upxq ď vpxq

13/58

PROVING THE ABSENCE OF SOLUTIONS

Take R def
“ Σ˚1Σ˚ for vi ac aaba cbab

ui aa baba ca

Lem 1. pa`bqux ď vx for all x P Σ˚:
– x“ ε: ? Would need aď ε or bď ε.
– x“ 1.y: pa`bqaauy ď ac vy? Would need aauy ď vy.
– x“ 2.y: pa`bqbabauy ď aaba vy? Would need bauy ď vy.
– x“ 3.y: pa`bqcauy ď cbab vy? Would need cauy ď vy.

Lem 2. ux ď b˚vx for all x P R:
– x“ ε: not in R
– x“ 1.y: aauy ď b˚ac vy? Would need auy ď vy.
– x“ 2.y: babauy ď b˚aaba vy? Would need uy ď vy with y P R.
– x“ 3.y: cauy ď b˚cbab vy? Would need uy ď b vy with y P R.

Coro. There is no x P R with upxq ď vpxq

13/58

PROVING THE ABSENCE OF SOLUTIONS

Take R def
“ Σ˚1Σ˚ for vi ac aaba cbab

ui aa baba ca

Lem 1. pa`bqux ď vx for all x P Σ˚:
– x“ ε: ? Would need aď ε or bď ε.
– x“ 1.y: pa`bqaauy ď ac vy? Would need aauy ď vy.
– x“ 2.y: pa`bqbabauy ď aaba vy? Would need bauy ď vy.
– x“ 3.y: pa`bqcauy ď cbab vy? Would need cauy ď vy.

Lem 2. ux ď b˚vx for all x P R:
– x“ ε: not in R
– x“ 1.y: aauy ď b˚ac vy? Would need auy ď vy.
– x“ 2.y: babauy ď b˚aaba vy? Would need uy ď vy with y P R.
– x“ 3.y: cauy ď b˚cbab vy? Would need uy ď b vy with y P R.

Coro. There is no x P R with upxq ď vpxq

13/58

PROVING THE ABSENCE OF SOLUTIONS

Take R def
“ Σ˚1Σ˚ for vi ac aaba cbab

ui aa baba ca

Lem 1. pa`bqux ď vx for all x P Σ˚:
– x“ ε: ? Would need aď ε or bď ε.
– x“ 1.y: pa`bqaauy ď ac vy? Would need aauy ď vy.
– x“ 2.y: pa`bqbabauy ď aaba vy? Would need bauy ď vy.
– x“ 3.y: pa`bqcauy ď cbab vy? Would need cauy ď vy.

Lem 2. ux ď b˚vx for all x P R:
– x“ ε: not in R
– x“ 1.y: aauy ď b˚ac vy? Would need auy ď vy.
– x“ 2.y: babauy ď b˚aaba vy? Would need uy ď vy with y P R.
– x“ 3.y: cauy ď b˚cbab vy? Would need uy ď b vy with y P R.

Coro. There is no x P R with upxq ď vpxq

13/58

PEP IS DECIDABLE — FIRST PROOF

General Method: – Guess regular languages AL and BL associated
with each of the finitely many quotients L of R.
– Check that they block solutions, i.e., that for all these L
‚ AL ux ď vx for all x P L,
‚ ux ď BL vx for all x P L.
– Check finally that ε PAR.
– Deduce that the PEP instance has no solutions.

Note 1: The method is effective: the checks mostly involve
regularity-preserving operations on regular languages.
Note 2: The method is complete: the largest blocking languages are
upward-closed, hence regular (Higman, Haines).

Hence PEP is co-r.e. Since it is obviously also r.e., it is decidable.

14/58

PEP IS DECIDABLE — FIRST PROOF

General Method: – Guess regular languages AL and BL associated
with each of the finitely many quotients L of R.
– Check that they block solutions, i.e., that for all these L
‚ AL ux ď vx for all x P L,
‚ ux ď BL vx for all x P L.
– Check finally that ε PAR.
– Deduce that the PEP instance has no solutions.

Note 1: The method is effective: the checks mostly involve
regularity-preserving operations on regular languages.
Note 2: The method is complete: the largest blocking languages are
upward-closed, hence regular (Higman, Haines).

Hence PEP is co-r.e. Since it is obviously also r.e., it is decidable.

14/58

PEP IS DECIDABLE — FIRST PROOF

General Method: – Guess regular languages AL and BL associated
with each of the finitely many quotients L of R.
– Check that they block solutions, i.e., that for all these L
‚ AL ux ď vx for all x P L,
‚ ux ď BL vx for all x P L.
– Check finally that ε PAR.
– Deduce that the PEP instance has no solutions.

Note 1: The method is effective: the checks mostly involve
regularity-preserving operations on regular languages.
Note 2: The method is complete: the largest blocking languages are
upward-closed, hence regular (Higman, Haines).

Hence PEP is co-r.e. Since it is obviously also r.e., it is decidable.

14/58

SECOND PROOF: HIGMAN’S LEMMA + EFFECTIVITY

Higman’s Lemma:
any infinite sequence w1,w2, . . . ,wm, . . . of words in Γ˚

contains an infinite increasing subsequence wi1 ďwi2 ď ¨ ¨ ¨ ďwim ¨ ¨ ¨

Question: Can one bound i2?

Finitary version of Higman’s Lemma: There is a computable
function H such that for any k-controlled sequence w1,w2, . . . ,wL of
words in Γ˚ the following holds:
if LěHpn,k,Γq then there is an increasing subsequence
wi1 ďwi2 ď ¨ ¨ ¨ ďwin of length n

NB: “k-controlled”
def
ô |wi| ď iˆk for all i“ 1,2, . . .

Proof: Tree of k-controlled sequences has finite branching. Cut each
branch when it has an increasing subsequence. Apply Kőnig’s
Lemma.

15/58

SECOND PROOF: HIGMAN’S LEMMA + EFFECTIVITY

Higman’s Lemma:
any infinite sequence w1,w2, . . . ,wm, . . . of words in Γ˚

contains an infinite increasing subsequence wi1 ďwi2 ď ¨ ¨ ¨ ďwim ¨ ¨ ¨

Question: Can one bound i2?

Finitary version of Higman’s Lemma: There is a computable
function H such that for any k-controlled sequence w1,w2, . . . ,wL of
words in Γ˚ the following holds:
if LěHpn,k,Γq then there is an increasing subsequence
wi1 ďwi2 ď ¨ ¨ ¨ ďwin of length n

NB: “k-controlled”
def
ô |wi| ď iˆk for all i“ 1,2, . . .

Proof: Tree of k-controlled sequences has finite branching. Cut each
branch when it has an increasing subsequence. Apply Kőnig’s
Lemma.

15/58

SECOND PROOF: HIGMAN’S LEMMA + EFFECTIVITY

Higman’s Lemma:
any infinite sequence w1,w2, . . . ,wm, . . . of words in Γ˚

contains an infinite increasing subsequence wi1 ďwi2 ď ¨ ¨ ¨ ďwim ¨ ¨ ¨

Question: Can one bound i2?

Finitary version of Higman’s Lemma: There is a computable
function H such that for any k-controlled sequence w1,w2, . . . ,wL of
words in Γ˚ the following holds:
if LěHpn,k,Γq then there is an increasing subsequence
wi1 ďwi2 ď ¨ ¨ ¨ ďwin of length n

NB: “k-controlled”
def
ô |wi| ď iˆk for all i“ 1,2, . . .

Proof: Tree of k-controlled sequences has finite branching. Cut each
branch when it has an increasing subsequence. Apply Kőnig’s
Lemma.

15/58

SECOND PROOF: HIGMAN’S LEMMA + EFFECTIVITY

Higman’s Lemma:
any infinite sequence w1,w2, . . . ,wm, . . . of words in Γ˚

contains an infinite increasing subsequence wi1 ďwi2 ď ¨ ¨ ¨ ďwim ¨ ¨ ¨

Question: Can one bound i2?

Finitary version of Higman’s Lemma: There is a computable
function H such that for any k-controlled sequence w1,w2, . . . ,wL of
words in Γ˚ the following holds:
if LěHpn,k,Γq then there is an increasing subsequence
wi1 ďwi2 ď ¨ ¨ ¨ ďwin of length n

NB: “k-controlled”
def
ô |wi| ď iˆk for all i“ 1,2, . . .

Proof: Tree of k-controlled sequences has finite branching. Cut each
branch when it has an increasing subsequence. Apply Kőnig’s
Lemma.

15/58

CUTTING THROUGH PEP SOLUTIONS
For x a length-N solution, write ui,j, . . . for upxri, jqq, . . .

For i P t0, . . . ,Nu, say xr0, iq is a good prefix if ui,N ď vi,N. Then let li
be the longest suffix of u0,i such that li.ui,N ď vi,N, call it “left
margin”

Lem. If aă b are good and la ď lb then x 1 “ xr0,aq.xrb,Nq is a
solution

16/58

CUTTING THROUGH PEP SOLUTIONS
For x a length-N solution, write ui,j, . . . for upxri, jqq, . . .

For i P t0, . . . ,Nu, say xr0, iq is a good prefix if ui,N ď vi,N. Then let li
be the longest suffix of u0,i such that li.ui,N ď vi,N, call it “left
margin”

Lem. If aă b are good and la ď lb then x 1 “ xr0,aq.xrb,Nq is a
solution

16/58

WHEN DO WE HAVE la ď lb?

‚ Let M“HpnR `1,Ku, |Γ |q with Ku “ maxiPΣ |upiq|

‚ If x has ąM good prefixes, it has a sequence la0 ď la1 ď ¨ ¨ ¨ ď lanR

Proof: the pliqi good are Ku-controlled

‚ If Ną 2M then either x has ąM good prefixes or it has ąM bad
prefixes, which are mirrors of good prefixes.

Lem. If a solution x P R is longer than 2M, then there is a shorter
solution x 1 P R

Proof: Take x 1 is xr0,aqxrb,Nq for aă b with la ď lb and
xr0,aq „R xr0,bq

Coro. PEP is decidable

17/58

WHEN DO WE HAVE la ď lb?

‚ Let M“HpnR `1,Ku, |Γ |q with Ku “ maxiPΣ |upiq|

‚ If x has ąM good prefixes, it has a sequence la0 ď la1 ď ¨ ¨ ¨ ď lanR

Proof: the pliqi good are Ku-controlled

‚ If Ną 2M then either x has ąM good prefixes or it has ąM bad
prefixes, which are mirrors of good prefixes.

Lem. If a solution x P R is longer than 2M, then there is a shorter
solution x 1 P R

Proof: Take x 1 is xr0,aqxrb,Nq for aă b with la ď lb and
xr0,aq „R xr0,bq

Coro. PEP is decidable

17/58

WHEN DO WE HAVE la ď lb?

‚ Let M“HpnR `1,Ku, |Γ |q with Ku “ maxiPΣ |upiq|

‚ If x has ąM good prefixes, it has a sequence la0 ď la1 ď ¨ ¨ ¨ ď lanR

Proof: the pliqi good are Ku-controlled

‚ If Ną 2M then either x has ąM good prefixes or it has ąM bad
prefixes, which are mirrors of good prefixes.

Lem. If a solution x P R is longer than 2M, then there is a shorter
solution x 1 P R

Proof: Take x 1 is xr0,aqxrb,Nq for aă b with la ď lb and
xr0,aq „R xr0,bq

Coro. PEP is decidable

17/58

WHEN DO WE HAVE la ď lb?

‚ Let M“HpnR `1,Ku, |Γ |q with Ku “ maxiPΣ |upiq|

‚ If x has ąM good prefixes, it has a sequence la0 ď la1 ď ¨ ¨ ¨ ď lanR

Proof: the pliqi good are Ku-controlled

‚ If Ną 2M then either x has ąM good prefixes or it has ąM bad
prefixes, which are mirrors of good prefixes.

Lem. If a solution x P R is longer than 2M, then there is a shorter
solution x 1 P R

Proof: Take x 1 is xr0,aqxrb,Nq for aă b with la ď lb and
xr0,aq „R xr0,bq

Coro. PEP is decidable

17/58

WHEN DO WE HAVE la ď lb?

‚ Let M“HpnR `1,Ku, |Γ |q with Ku “ maxiPΣ |upiq|

‚ If x has ąM good prefixes, it has a sequence la0 ď la1 ď ¨ ¨ ¨ ď lanR

Proof: the pliqi good are Ku-controlled

‚ If Ną 2M then either x has ąM good prefixes or it has ąM bad
prefixes, which are mirrors of good prefixes.

Lem. If a solution x P R is longer than 2M, then there is a shorter
solution x 1 P R

Proof: Take x 1 is xr0,aqxrb,Nq for aă b with la ď lb and
xr0,aq „R xr0,bq

Coro. PEP is decidable

17/58

EXTENSIONS AND VARIANTS

D8PEP is decidable.
#PEP is computable.
‚ @x P R : upxq ď vpxq and @8x P R : upxq ď vpxq are decidable
‚ Dx P Σ` :

`

u1pxq ď v1pxq ^u2pxq ď v2pxq
˘

and Dx P Σ` :
`

u1pxq ď v1pxq ^u2pxq ď v2pxq
˘

are undecidable
‚ @x P R Dy P R 1 : upxyq ď vpxyq is undecidable

Bottom line. PEP is Fωω -complete. Nice problem to use in
reductions.

18/58

FOURTH PROBLEM: SUBWORD-CLOSURES AND

SUPERWORD-CLOSURES

Compute the set of subwords
(or of superwords) of a language?

Joint work with Prateek Karandikar & Mathias Niewerth

19/58

CLOSED LANGUAGES

A language LĎ Σ˚ is
§ Upward closed, if x P L and xď y implies y P L.

§ Downward closed, if x P L and yď x implies y P L.
Examples:

§ The set of all superwords of aacb is upward closed, this is
Σ˚aΣ˚aΣ˚cΣ˚bΣ˚.

§ tw : |w|c ą 0^ |w|a ě 2u is upward closed.

§ The set of all subwords of aabbab is downward closed.

§ pa`bq˚pc` εq ` c˚ is downward closed.

20/58

CLOSED LANGUAGES

A language LĎ Σ˚ is
§ Upward closed, if x P L and xď y implies y P L.

§ Downward closed, if x P L and yď x implies y P L.
Examples:

§ The set of all superwords of aacb is upward closed, this is
Σ˚aΣ˚aΣ˚cΣ˚bΣ˚.

§ tw : |w|c ą 0^ |w|a ě 2u is upward closed.

§ The set of all subwords of aabbab is downward closed.

§ pa`bq˚pc` εq ` c˚ is downward closed.

20/58

CLOSED LANGUAGES

A language LĎ Σ˚ is
§ Upward closed, if x P L and xď y implies y P L.

§ Downward closed, if x P L and yď x implies y P L.
Examples:

§ The set of all superwords of aacb is upward closed, this is
Σ˚aΣ˚aΣ˚cΣ˚bΣ˚.

§ tw : |w|c ą 0^ |w|a ě 2u is upward closed.

§ The set of all subwords of aabbab is downward closed.

§ pa`bq˚pc` εq ` c˚ is downward closed.

20/58

CLOSURES

The upward closure of L is the smallest upward closed language
which includes L:

ÒL“ tx : Dy P L yď xu

For example, ÒH “ H. But Òtεu “ Σ˚.
Òtx : |x|a is even and |x|b is oddu “ Σ˚bΣ˚.

The downward closure of L is the smallest downward closed
language which includes L:

ÓL“ tx : Dy P L xď yu

For example, Ó
“

pabaq˚pbbq`pbcq˚
‰

“ pa`bq˚pb` cq˚.

21/58

CLOSURES

The upward closure of L is the smallest upward closed language
which includes L:

ÒL“ tx : Dy P L yď xu

For example, ÒH “ H. But Òtεu “ Σ˚.
Òtx : |x|a is even and |x|b is oddu “ Σ˚bΣ˚.

The downward closure of L is the smallest downward closed
language which includes L:

ÓL“ tx : Dy P L xď yu

For example, Ó
“

pabaq˚pbbq`pbcq˚
‰

“ pa`bq˚pb` cq˚.

21/58

REGULARITY

Every upward closed language has a finite set of minimal elements
(by Higman’s Lemma), and so is regular (/rational/recognizable).
By complementation, every downward closed language is regular.

Central problem
Computing with closed languages, for example:

§ Given L, compute ÒL and ÓL.

§ Given L1,L2, decide whether ÒL1 “ ÒL2 etc.

This problem exists in many variants, depending on the situation at
hand.

22/58

REGULARITY

Every upward closed language has a finite set of minimal elements
(by Higman’s Lemma), and so is regular (/rational/recognizable).
By complementation, every downward closed language is regular.

Central problem
Computing with closed languages, for example:

§ Given L, compute ÒL and ÓL.

§ Given L1,L2, decide whether ÒL1 “ ÒL2 etc.

This problem exists in many variants, depending on the situation at
hand.

22/58

REGULARITY

Every upward closed language has a finite set of minimal elements
(by Higman’s Lemma), and so is regular (/rational/recognizable).
By complementation, every downward closed language is regular.

Central problem
Computing with closed languages, for example:

§ Given L, compute ÒL and ÓL.

§ Given L1,L2, decide whether ÒL1 “ ÒL2 etc.

This problem exists in many variants, depending on the situation at
hand.

I will consider state complexity, when L is regular.

“State complexity”, denoted nDpLq and nNpLq = minimal number of
states of a DFA (resp. NFA) that recognizes L. Also: nUpLq, nApLq, . . .

22/58

UPWARD CLOSURE WITH NFAS

Assume that L is recognized by A.

An NFA for ÒL, denoted AÒ, can be obtained from A by adding
self-loops with all letters on all states.

a b
ñ

a b

a,b,c,A
AÒ

23/58

UPWARD CLOSURE - EXAMPLE

Consider an alphabet Σ“ ta1, . . . ,aku, and the language

Ek “ ta1a1,a2a2, . . . ,akaku

It is recognized by the following:

in i fi

1

k

...

...

a1

ai

ak

a1

ai

ak

This is in fact deterministic and has k`2 states.

24/58

UPWARD CLOSURE - EXAMPLE

Consider an alphabet Σ“ ta1, . . . ,aku, and the language

Ek “ ta1a1,a2a2, . . . ,akaku

It is recognized by the following:

in i fi

1

k

...

...

a1

ai

ak

a1

ai

ak

This is in fact deterministic and has k`2 states.

24/58

Add a self-loop with all letters on every state, to get upward closure:

in i fi

1

k

...

...

a1

ai

ak

a1

ai

ak

ñ in i fi

1

k

...

a1

ai

ak

a1

ai

ak

Σ

Σ

Σ

Σ

Σ

No longer deterministic!

25/58

UPWARD CLOSURE - EXAMPLE

Ek “ ta1a1,a2a2, . . . ,akaku

ÒEk “ “some letter appears at least twice”

A DFA for ÒEk must remember the set of letters read so far, and so
needs at least 2k states.

Concl. An exponential blowup may be necessary (and is always
sufficient) when computing a DFA for AÒ.

26/58

UPWARD CLOSURE - EXAMPLE

Ek “ ta1a1,a2a2, . . . ,akaku

ÒEk “ “some letter appears at least twice”

A DFA for ÒEk must remember the set of letters read so far, and so
needs at least 2k states.

Concl. An exponential blowup may be necessary (and is always
sufficient) when computing a DFA for AÒ.

26/58

DOWNWARD CLOSURE WITH NFAS

Assume that L is recognized by A.

An NFA for ÓL, denoted AÓ, is obtained from A by adding an
ε-transition parallel to every transition.

a
ñ

a

ε

A AÓ

27/58

DOWNWARD CLOSURE - EXAMPLE

Consider an alphabet Σ with k letters, and the language

Dk “
ď

aPΣ

a ¨
`

Σ∖ tau
˘˚

It is recognized by the following:

in i

1

k

...

...

a1

ai

ak

taj | j‰ 1u

taj | j‰ iu

taj | j‰ ku

This is deterministic and has k`1 states.

28/58

DOWNWARD CLOSURE - EXAMPLE

Consider an alphabet Σ with k letters, and the language

Dk “
ď

aPΣ

a ¨
`

Σ∖ tau
˘˚

It is recognized by the following:

in i

1

k

...

...

a1

ai

ak

taj | j‰ 1u

taj | j‰ iu

taj | j‰ ku

This is deterministic and has k`1 states.

28/58

Add ε-edges parallel to every edge, to get downward closure:

in i

1

k

...

...

a1

ai

ak

taj | j‰ 1u

taj | j‰ iu

taj | j‰ ku

ñ in i

1

k

...

...

a1
`
ε

ai ` ε
a
k `
ε

taj | j‰ 1u

taj | j‰ iu

taj | j‰ ku

No longer deterministic!

29/58

DOWNWARD CLOSURE - DFAS

Dk “
ď

aPΣ

a ¨
`

Σ∖ tau
˘˚

ÓDk “Dk Y “some letter does not appear” “
ď

aPΣ

pa` εqpΣ∖ tauq˚

A DFA for ÓDk must remember the set of letters seen so far (ignoring
the first letter), and so has at least 2k states.

Concl. An exponential blowup may be necessary (and is always
sufficient) when computing a DFA for AÓ. (Same as for upward
closure)

30/58

DOWNWARD CLOSURE - DFAS

Dk “
ď

aPΣ

a ¨
`

Σ∖ tau
˘˚

ÓDk “Dk Y “some letter does not appear” “
ď

aPΣ

pa` εqpΣ∖ tauq˚

A DFA for ÓDk must remember the set of letters seen so far (ignoring
the first letter), and so has at least 2k states.

Concl. An exponential blowup may be necessary (and is always
sufficient) when computing a DFA for AÓ. (Same as for upward
closure)

30/58

HISTORY OF THE QUESTION

§ Gruber, Holzer, and Kutrib explicitly raised the question (Fund.
Inf. 2009) and showed a 2Ωp

?
n logpnqq lower bound, for DFAs.

§ Okhotin improved these bounds (Fund. Inf. 2010), gave exact
bounds for upward closure on unbounded alphabets, and gave
exponential 2Ωp

?
nq lower bounds for a three-letter alphabet.

§ Brzozowski and Jirásková (2010) gave exact upper bounds for
upward and downward closures on unbounded alphabets.

§ It turns out that Héam (ITA 2002) already had an exponential

r
?
n lower bound —with r“

`1`
?
5

2

˘

?
2
2 — for upward closure with

a two-letter alphabet while studying “shuffle ideals”.

31/58

LOWER BOUND FOR DOWNWARD CLOSURE WITH n

LETTERS

32/58

LOWER BOUND FOR DOWNWARD CLOSURE WITH 3
LETTERS

33/58

STATE COMPLEXITY OF UPWARD CLOSURE

Proposition (Okhotin) [Upper bound]. 1. If A is an n-state NFA
then nDpÒLpAqq ď 2n´2 `1.

Proof 1. Let A“ pΣ,Q,δ,I,Fq be an n-state NFA for L“ LpAq. We
assume that IX F“ H (and I‰ H ‰ F) otherwise L contains ε (or is
empty) and ÒL is trivial.
Since AÒ has loops on all its states and for any letter, applying the
powerset construction yields a DFA where P a−Ñ P 1 implies P Ď P 1,
hence any state P reachable from I includes I. Furthermore, if P is
accepting (i.e., PX F‰ H) and P a−Ñ P 1, then P 1 is accepting too,
hence all accepting states recognize exactly Σ˚ and are equivalent.
Then there can be at most 2|Q∖pIYFq| states in the powerset
automaton that are both reachable and not accepting. To this we add
1 for the accepting states since they are all equivalent. Finally
nDpÒLq ď 2n´2 `1 since |IY F| is at least 2 as we observed.

34/58

STATE COMPLEXITY OF UPWARD CLOSURE

Proposition (Okhotin) [Upper bound]. 1. If A is an n-state NFA
then nDpÒLpAqq ď 2n´2 `1.

Proof 1. Let A“ pΣ,Q,δ,I,Fq be an n-state NFA for L“ LpAq. We
assume that IX F“ H (and I‰ H ‰ F) otherwise L contains ε (or is
empty) and ÒL is trivial.
Since AÒ has loops on all its states and for any letter, applying the
powerset construction yields a DFA where P a−Ñ P 1 implies P Ď P 1,
hence any state P reachable from I includes I. Furthermore, if P is
accepting (i.e., PX F‰ H) and P a−Ñ P 1, then P 1 is accepting too,
hence all accepting states recognize exactly Σ˚ and are equivalent.
Then there can be at most 2|Q∖pIYFq| states in the powerset
automaton that are both reachable and not accepting. To this we add
1 for the accepting states since they are all equivalent. Finally
nDpÒLq ď 2n´2 `1 since |IY F| is at least 2 as we observed.

34/58

STATE COMPLEXITY OF UPWARD CLOSURE

Proposition (after Okhotin) [Lower bound]. 1. If A is an n-state
NFA then nDpÒLpAqq ď 2n´2 `1.
2. Furthermore, for any ną 1 there exists a language Ln with
nNpLnq “ n and nDpÒLnq “ nUpÒLnq “ 2n´2 `1.

For the lower bound, Ln “ En´2 works!

Recall that Ek “ ta1a1,a2a2, . . . ,akaku is recognized by a DFA wwith
k`2 states.
And that a DFA for ÒEk (= “some letter appears at least twice”) needs
2k `1 states.

35/58

STATE COMPLEXITY OF UPWARD CLOSURE

Proposition (after Okhotin) [Lower bound]. 1. If A is an n-state
NFA then nDpÒLpAqq ď 2n´2 `1.
2. Furthermore, for any ną 1 there exists a language Ln with
nNpLnq “ n and nDpÒLnq “ nUpÒLnq “ 2n´2 `1.

For the lower bound, Ln “ En´2 works!

Recall that Ek “ ta1a1,a2a2, . . . ,akaku is recognized by a DFA wwith
k`2 states.
And that a DFA for ÒEk (= “some letter appears at least twice”) needs
2k `1 states.

35/58

STATE COMPLEXITY OF DOWNWARD CLOSURE

Proposition (after Brzozowski & Jirásková) [Upper bound]. 1. If A
is an n-state NFA with only one initial state (in particular when A is a
DFA) then nDpÓLpAqq ď 2n´1.

Proof 1. We assume, w.l.o.g., that all states in A“ pΣ,Q,δ,tqinitu,Fq
are reachable from the single initial state. From A one derives an
NFA AÓ for ÓLpAq by adding ε-transitions to A.

With these ε-transitions, the language recognized from a state q PQ
is a subset of the language recognized from qinit. Hence, in the
powerset automaton obtained by determinizing AÓ, all states P ĎQ
that contain qinit are equivalent and recognize exactly ÓLpAq.

There also are 2n´1 states in 2Q that do not contain qinit. Thus
2n´1 `1 bounds the number of non-equivalent states in the powerset
automaton of AÓ, and this includes a sink state (namely H P 2Q) that
will be omitted in the canonical minimal DFA for ÓLpAq.

36/58

STATE COMPLEXITY OF DOWNWARD CLOSURE

Proposition (after Brzozowski & Jirásková) [Upper bound]. 1. If A
is an n-state NFA with only one initial state (in particular when A is a
DFA) then nDpÓLpAqq ď 2n´1.

Proof 1. We assume, w.l.o.g., that all states in A“ pΣ,Q,δ,tqinitu,Fq
are reachable from the single initial state. From A one derives an
NFA AÓ for ÓLpAq by adding ε-transitions to A.

With these ε-transitions, the language recognized from a state q PQ
is a subset of the language recognized from qinit. Hence, in the
powerset automaton obtained by determinizing AÓ, all states P ĎQ
that contain qinit are equivalent and recognize exactly ÓLpAq.

There also are 2n´1 states in 2Q that do not contain qinit. Thus
2n´1 `1 bounds the number of non-equivalent states in the powerset
automaton of AÓ, and this includes a sink state (namely H P 2Q) that
will be omitted in the canonical minimal DFA for ÓLpAq.

36/58

STATE COMPLEXITY OF DOWNWARD CLOSURE

Proposition [Lower bound]. 1. If A is an n-state NFA with only one
initial state (in particular when A is a DFA) then nDpÓLpAqq ď 2n´1.
2. Furthermore, for any ną 1 there exists a language L 1

n with
nDpL 1

nq “ n and nDpÓL 1
nq “ nUpÓL 1

nq “ 2n´1.

For the lower bound, Dn´1 works!

Recall that Dk “
Ť

aPΣa.pΣ∖aq˚ is recognized by a DFA with k`1
states.

And that a DFA for ÓDk needs 2k states.
We can show that 2k states are required for ÓDk even using
Unambiguous NFAs.

NB: For NFAs with several initial states, a DFA for AÓ may need
2n ´1 states.

37/58

STATE COMPLEXITY OF DOWNWARD CLOSURE

Proposition [Lower bound]. 1. If A is an n-state NFA with only one
initial state (in particular when A is a DFA) then nDpÓLpAqq ď 2n´1.
2. Furthermore, for any ną 1 there exists a language L 1

n with
nDpL 1

nq “ n and nDpÓL 1
nq “ nUpÓL 1

nq “ 2n´1.

For the lower bound, Dn´1 works!

Recall that Dk “
Ť

aPΣa.pΣ∖aq˚ is recognized by a DFA with k`1
states.

And that a DFA for ÓDk needs 2k states.
We can show that 2k states are required for ÓDk even using
Unambiguous NFAs.

NB: For NFAs with several initial states, a DFA for AÓ may need
2n ´1 states.

37/58

LOWER BOUNDS FOR A TWO-LETTER ALPHABET

Proposition. For languages over a 2-letter alphabet, nDpÒLq and
nDpÓLq are in 2Ωpn1{3q, where n“ nDpLq.

We use the same family of witness languages to show both lower
bounds.

Idea. Encode a larger alphabet by a 2-letter alphabet. Be careful
about the interaction with the subword relation.

H“ tn,n`1, . . . ,2nu

For i PH, cpiq “ aib3n´i.

L“ tcpiqn : i PHu

38/58

LOWER BOUNDS FOR A TWO-LETTER ALPHABET

Proposition. For languages over a 2-letter alphabet, nDpÒLq and
nDpÓLq are in 2Ωpn1{3q, where n“ nDpLq.

We use the same family of witness languages to show both lower
bounds.

Idea. Encode a larger alphabet by a 2-letter alphabet. Be careful
about the interaction with the subword relation.

H“ tn,n`1, . . . ,2nu

For i PH, cpiq “ aib3n´i.

L“ tcpiqn : i PHu

38/58

H“ tn,n`1, . . . ,2nu

cpiq “ aib3n´i

L“ tcpiqn : i PHu

For n“ 2, H“ t2,3,4u, and

L“ taabbbbaabbbb,

aaabbbaaabbb,

aaaabbaaaabbu

39/58

For general n,

H“ tn,n`1, . . . ,2nu

cpiq “ aib3n´i

L“ tcpiqn : i PHu

L has a DFA with 3n3 `1 states, but both ÒL and ÓL need more than
`

n`1
n{2

˘

states. This is « 2n`3{2
?
πn

, i.e. 2Ωpnq states.

Proof idea: for any two different halves X“ tp1, . . . ,pn{2u and

Y “ tq1, . . . ,qn{2u of H, the words wX
def
“ cpp1q ¨ ¨ ¨cppn{2q and

wY
def
“ cpq1q ¨ ¨ ¨cpqn{2q must reach different states in any DFA for ÓL.

For ÒL, one considers w 1
X

def
“ cpp1qcpp1q ¨ ¨ ¨cppn{2qcppn{2q and

w 1
Y

def
“ cpq1qcpq1q ¨ ¨ ¨cpqn{2qcpqn{2q.

40/58

For general n,

H“ tn,n`1, . . . ,2nu

cpiq “ aib3n´i

L“ tcpiqn : i PHu

L has a DFA with 3n3 `1 states, but both ÒL and ÓL need more than
`

n`1
n{2

˘

states. This is « 2n`3{2
?
πn

, i.e. 2Ωpnq states.

Proof idea: for any two different halves X“ tp1, . . . ,pn{2u and

Y “ tq1, . . . ,qn{2u of H, the words wX
def
“ cpp1q ¨ ¨ ¨cppn{2q and

wY
def
“ cpq1q ¨ ¨ ¨cpqn{2q must reach different states in any DFA for ÓL.

For ÒL, one considers w 1
X

def
“ cpp1qcpp1q ¨ ¨ ¨cppn{2qcppn{2q and

w 1
Y

def
“ cpq1qcpq1q ¨ ¨ ¨cpqn{2qcpqn{2q.

40/58

COMPLEXITY OF DECISION PROBLEMS

Proposition.
Deciding whether LpAq is upward-closed or downward-closed is
PSPACE-complete over NFAs (NL-complete over DFAs), even in the
2-letter alphabet case.

Proposition (Bachmeier+Luttenberger+Schlund, 2015).
1. Deciding whether ÓLpAq Ď ÓLpBq or whether ÒLpAq Ď ÒLpBq is
coNP-complete when A and B are NFAs.
2. Deciding ÓLpAq “ ÓLpBq or ÒLpAq “ ÒLpBq is coNP-hard even when
A and B are DFAs over a two-letter alphabet.
3. These problems are NL-complete when restricting to NFAs over a
1-letter alphabet.

Proposition (Rampersad+Shallit+Xu, Fund. Inf. 2012).
Deciding whether ÓLpAq “ Σ˚ when A is a NFA is NL-complete.

41/58

FIFTH PROBLEMS: CONSTRAINTS

How do we solve inequations?

Joint work with Prateek Karandikar, Simon Halfon & Georg Zetzsche

42/58

THE FIRST-ORDER LOGIC OF SUBWORDS

We consider FOpA˚;ďq formulas, like

@u,v,w : uď v^ vďw =ñ uďw (φ1)

@u : ab ď u^ ba ď u =ñ aa ď u_ bb ď u (φ2)

Du : abcd ď u^ bcde ď u^ abcde ď u (φ3)

@u,v : Dw :

ˆ

uďw^ vďw
^ @t : ruď t^ vď t =ñ wď ts

˙

(φ4)

Du1, . . . ,un P a`b` :
ľ

1ďiăjďn

ui K uj (φ5,n)

NB1: Whether A˚ |=φ may depend on A.

NB2: φ5 actually uses FOpA˚;ď,R1,R2, . . .q, the logic enriched with
regular predicates.

43/58

VALIDITY (ALSO TRUTH) PROBLEM FOR LOGICS OF

WORDS

Problem: Given A and a sentence φ in FOpA˚;ďq, is φ true?

‚ FOpA˚;ďprefixq —even MSOpA˚,ďprefixq— is decidable (Rabin 1969)

‚ FOpA˚; ¨q: undecidable (Quine, 1946) but the Σ1 fragment is
decidable: cf. word equations (Makanin, 1977; Büchi & Senger,
1986/7; Plandowski 1999; Jeż 2017)

‚ FOpA˚;ďinfixq: undecidable (Kuske 2006)

What about FOpA˚;ďq?

44/58

VALIDITY (ALSO TRUTH) PROBLEM FOR LOGICS OF

WORDS

Problem: Given A and a sentence φ in FOpA˚;ďq, is φ true?

‚ FOpA˚;ďprefixq —even MSOpA˚,ďprefixq— is decidable (Rabin 1969)

‚ FOpA˚; ¨q: undecidable (Quine, 1946) but the Σ1 fragment is
decidable: cf. word equations (Makanin, 1977; Büchi & Senger,
1986/7; Plandowski 1999; Jeż 2017)

‚ FOpA˚;ďinfixq: undecidable (Kuske 2006)

What about FOpA˚;ďq?

44/58

WHAT ABOUT FOpA˚;ďq?
Comon & Treinen, 1994: small extension FOpA˚;ď,paq (with prefixing
function pa : u ÞÑ a ¨u) is undecidable, even the Σ4 fragment, on a
3-letter alphabet.

Kuske, 2006: FOpA˚;ďq undecidable, even the Σ3 fragment on a
2-letter alphabet. And the Σ1 fragment is decidable.

Kudinov, Selivanov & Yartseva, 2010: FOpA˚;ďq is computably
isomorphic to FOpω;`,ˆq, aka first-order arithmetic.

Karandikar & Schnoebelen, 2015: The Σ2 fragment is undecidable,
even over a “small” fixed alphabet, and eventually a 2-letter alphabet.

Karandikar & Schnoebelen, 2016: The FO2 fragment is decidable
even when allowing regular predicates.

Halfon, Schnoebelen & Zetzsche, 2017: The Σ1 fragment

45/58

FOpA˚;ďq WITH OR WITHOUT CONSTANTS?

Unlike “@u,v,w : uď vďw =ñ uďw”, some formulas use
constants, e.g., “ab ď u^ ba ď u =ñ paa ď u_ bb ď uq”

Same for “x P a`b`”, short for “ab ď x^ ba ď x^ c ď x^ ¨¨ ¨ ”

This is FOpA˚;ďq vs. FOpA˚;ď,w1,w2, ...q

Anyway, constant words can be defined in FOpA˚;ďq:
ψepuq

def
” @x : uď x defines ”u“ ε”

ψlpvq
def
” @x : xď v=ñ pψepxq_vď xq defines “v is a letter or ε”

NB: We can state “|A| “ n” and “|A| ě ℵ0” in FOpA˚;ďq

Defining words: we can define e.g., “v � aabac” without using
constants but this is defined “modulo automorphisms of the pA˚;ďq

structure”.

46/58

FOpA˚;ďq WITH OR WITHOUT CONSTANTS?

Unlike “@u,v,w : uď vďw =ñ uďw”, some formulas use
constants, e.g., “ab ď u^ ba ď u =ñ paa ď u_ bb ď uq”

Same for “x P a`b`”, short for “ab ď x^ ba ď x^ c ď x^ ¨¨ ¨ ”

This is FOpA˚;ďq vs. FOpA˚;ď,w1,w2, ...q

Anyway, constant words can be defined in FOpA˚;ďq:
ψepuq

def
” @x : uď x defines ”u“ ε”

ψlpvq
def
” @x : xď v=ñ pψepxq_vď xq defines “v is a letter or ε”

NB: We can state “|A| “ n” and “|A| ě ℵ0” in FOpA˚;ďq

Defining words: we can define e.g., “v � aabac” without using
constants but this is defined “modulo automorphisms of the pA˚;ďq

structure”.

46/58

FOpA˚;ďq WITH OR WITHOUT CONSTANTS?

Unlike “@u,v,w : uď vďw =ñ uďw”, some formulas use
constants, e.g., “ab ď u^ ba ď u =ñ paa ď u_ bb ď uq”

Same for “x P a`b`”, short for “ab ď x^ ba ď x^ c ď x^ ¨¨ ¨ ”

This is FOpA˚;ďq vs. FOpA˚;ď,w1,w2, ...q

Anyway, constant words can be defined in FOpA˚;ďq:
ψepuq

def
” @x : uď x defines ”u“ ε”

ψlpvq
def
” @x : xď v=ñ pψepxq_vď xq defines “v is a letter or ε”

NB: We can state “|A| “ n” and “|A| ě ℵ0” in FOpA˚;ďq

Defining words: we can define e.g., “v � aabac” without using
constants but this is defined “modulo automorphisms of the pA˚;ďq

structure”.

46/58

SUBWORD CONSTRAINTS

“Subword Constraints” ” the Σ1-fragment

abc ď u^uď v^u ď baa^ ¨¨ ¨ ^ v Kw

How do we compute a set of solutions?

Recall: “The Σ1 fragment is decidable” (in fact NP-complete)
Yes but this was about the logic without constants!
Ok but “constants can be defined within the logic”, no?
Well, we defined ε by a Π1 formula ...

Bottom Line: we don’t really know whether the Σ1 fragment of
FOpA˚;ď,w1,w2, . . .q is decidable

Thm. (Halfon, Schnoebelen & Zetzsche, 2017): the fragment is
undecidable

47/58

SUBWORD CONSTRAINTS

“Subword Constraints” ” the Σ1-fragment

abc ď u^uď v^u ď baa^ ¨¨ ¨ ^ v Kw

How do we compute a set of solutions?

Recall: “The Σ1 fragment is decidable” (in fact NP-complete)
Yes but this was about the logic without constants!
Ok but “constants can be defined within the logic”, no?
Well, we defined ε by a Π1 formula ...

Bottom Line: we don’t really know whether the Σ1 fragment of
FOpA˚;ď,w1,w2, . . .q is decidable

Thm. (Halfon, Schnoebelen & Zetzsche, 2017): the fragment is
undecidable

47/58

SUBWORD CONSTRAINTS

“Subword Constraints” ” the Σ1-fragment

abc ď u^uď v^u ď baa^ ¨¨ ¨ ^ v Kw

How do we compute a set of solutions?

Recall: “The Σ1 fragment is decidable” (in fact NP-complete)
Yes but this was about the logic without constants!
Ok but “constants can be defined within the logic”, no?
Well, we defined ε by a Π1 formula ...

Bottom Line: we don’t really know whether the Σ1 fragment of
FOpA˚;ď,w1,w2, . . .q is decidable

Thm. (Halfon, Schnoebelen & Zetzsche, 2017): the fragment is
undecidable

47/58

Σ1-DEFINABLE PROPERTIES

Fix A“ ta,bu. Here are some Σ1-definable properties:

|u|a ă |va|
def
” Dx P a˚ : xď v^ x ď u

” Dx : b ď x^ xď v^ x ď u

Dną 0 : u“ an`1 ^ v“ anb
def
” u P a˚ ^ v P a˚b^ |v|a ă |u|a ^ Dx P a˚baa : v ď x^uď x

using v P a˚b
def
” bď v^ba ď v^bb ď v

and x P a˚baa
def
” baaď x^bb ď x^baaa ď x

u,v PA˚b^ |u|a “ |v|a
def
” Dx P a˚ : Dy P a˚b :

Dn : x“ an`1 ^y“ anb
^ u,v PA˚ ^yď u ě x^yď v ě x

48/58

Σ1-DEFINABLE PROPERTIES

Fix A“ ta,bu. Here are some Σ1-definable properties:

|u|a ă |va|
def
” Dx P a˚ : xď v^ x ď u

” Dx : b ď x^ xď v^ x ď u

Dną 0 : u“ an`1 ^ v“ anb
def
” u P a˚ ^ v P a˚b^ |v|a ă |u|a ^ Dx P a˚baa : v ď x^uď x

using v P a˚b
def
” bď v^ba ď v^bb ď v

and x P a˚baa
def
” baaď x^bb ď x^baaa ď x

u,v PA˚b^ |u|a “ |v|a
def
” Dx P a˚ : Dy P a˚b :

Dn : x“ an`1 ^y“ anb
^ u,v PA˚ ^yď u ě x^yď v ě x

48/58

Σ1-DEFINABLE PROPERTIES

Fix A“ ta,bu. Here are some Σ1-definable properties:

|u|a ă |va|
def
” Dx P a˚ : xď v^ x ď u

” Dx : b ď x^ xď v^ x ď u

Dną 0 : u“ an`1 ^ v“ anb
def
” u P a˚ ^ v P a˚b^ |v|a ă |u|a ^ Dx P a˚baa : v ď x^uď x

using v P a˚b
def
” bď v^ba ď v^bb ď v

and x P a˚baa
def
” baaď x^bb ď x^baaa ď x

u,v PA˚b^ |u|a “ |v|a
def
” Dx P a˚ : Dy P a˚b :

Dn : x“ an`1 ^y“ anb
^ u,v PA˚ ^yď u ě x^yď v ě x

48/58

Σ1-DEFINABLE PROPERTIES

Fix A“ ta,bu. Here are some Σ1-definable properties:

|u|a ă |va|
def
” Dx P a˚ : xď v^ x ď u

” Dx : b ď x^ xď v^ x ď u

Dną 0 : u“ an`1 ^ v“ anb
def
” u P a˚ ^ v P a˚b^ |v|a ă |u|a ^ Dx P a˚baa : v ď x^uď x

using v P a˚b
def
” bď v^ba ď v^bb ď v

and x P a˚baa
def
” baaď x^bb ď x^baaa ď x

u,v PA˚b^ |u|a “ |v|a
def
” Dx P a˚ : Dy P a˚b :

Dn : x“ an`1 ^y“ anb
^ u,v PA˚ ^yď u ě x^yď v ě x

48/58

Σ1-DEFINABLE PROPERTIES

Fix A“ ta,bu. Here are some Σ1-definable properties:

|u|a ă |va|
def
” Dx P a˚ : xď v^ x ď u

” Dx : b ď x^ xď v^ x ď u

Dną 0 : u“ an`1 ^ v“ anb
def
” u P a˚ ^ v P a˚b^ |v|a ă |u|a ^ Dx P a˚baa : v ď x^uď x

using v P a˚b
def
” bď v^ba ď v^bb ď v

and x P a˚baa
def
” baaď x^bb ď x^baaa ď x

u,v PA˚b^ |u|a “ |v|a
def
” Dx P a˚ : Dy P a˚b :

Dn : x“ an`1 ^y“ anb
^ u,v PA˚ ^yď u ě x^yď v ě x

48/58

MORE Σ1-DEFINABLE PROPERTIES
Dn : u“ aabanb^ v“ aban`1b^w“ ban`2b
def
” u P aaba˚b^ v“ aba˚b^w“ ba˚b

^
“

u,v,w PA˚b^ |u|a “ |v|a “ |w|a
‰

Dną 0 : u“ banb^ v“ ban`1b

def
” Dx,y,z :

Dm : x“ aabamb^y“ abam`1b^ z“ bam`b
^ u,v P ba˚b^ x ě uď y ě vď z

Dn : u“ an ^ v“ an`1 def
” Dx,y ¨ ¨ ¨

v“ a|u|a ” v“ πapuq
def
” Dx,y ¨ ¨ ¨

|u|a “ |v|a
def
” Dx,y ¨ ¨ ¨

u P a˚ ^ v“ bu^w“ ub
def
” Dx,y ¨ ¨ ¨

|w|a “ |u|a ` |v|a
def
” Dx,y ¨ ¨ ¨

49/58

MORE Σ1-DEFINABLE PROPERTIES
Dn : u“ aabanb^ v“ aban`1b^w“ ban`2b
def
” u P aaba˚b^ v“ aba˚b^w“ ba˚b

^
“

u,v,w PA˚b^ |u|a “ |v|a “ |w|a
‰

Dną 0 : u“ banb^ v“ ban`1b

def
” Dx,y,z :

Dm : x“ aabamb^y“ abam`1b^ z“ bam`b
^ u,v P ba˚b^ x ě uď y ě vď z

Dn : u“ an ^ v“ an`1 def
” Dx,y ¨ ¨ ¨

v“ a|u|a ” v“ πapuq
def
” Dx,y ¨ ¨ ¨

|u|a “ |v|a
def
” Dx,y ¨ ¨ ¨

u P a˚ ^ v“ bu^w“ ub
def
” Dx,y ¨ ¨ ¨

|w|a “ |u|a ` |v|a
def
” Dx,y ¨ ¨ ¨

49/58

MORE Σ1-DEFINABLE PROPERTIES
Dn : u“ aabanb^ v“ aban`1b^w“ ban`2b
def
” u P aaba˚b^ v“ aba˚b^w“ ba˚b

^
“

u,v,w PA˚b^ |u|a “ |v|a “ |w|a
‰

Dną 0 : u“ banb^ v“ ban`1b

def
” Dx,y,z :

Dm : x“ aabamb^y“ abam`1b^ z“ bam`b
^ u,v P ba˚b^ x ě uď y ě vď z

Dn : u“ an ^ v“ an`1 def
” Dx,y ¨ ¨ ¨

v“ a|u|a ” v“ πapuq
def
” Dx,y ¨ ¨ ¨

|u|a “ |v|a
def
” Dx,y ¨ ¨ ¨

u P a˚ ^ v“ bu^w“ ub
def
” Dx,y ¨ ¨ ¨

|w|a “ |u|a ` |v|a
def
” Dx,y ¨ ¨ ¨

49/58

MORE Σ1-DEFINABLE PROPERTIES
Dn : u“ aabanb^ v“ aban`1b^w“ ban`2b
def
” u P aaba˚b^ v“ aba˚b^w“ ba˚b

^
“

u,v,w PA˚b^ |u|a “ |v|a “ |w|a
‰

Dną 0 : u“ banb^ v“ ban`1b

def
” Dx,y,z :

Dm : x“ aabamb^y“ abam`1b^ z“ bam`b
^ u,v P ba˚b^ x ě uď y ě vď z

Dn : u“ an ^ v“ an`1 def
” Dx,y ¨ ¨ ¨

v“ a|u|a ” v“ πapuq
def
” Dx,y ¨ ¨ ¨

|u|a “ |v|a
def
” Dx,y ¨ ¨ ¨

u P a˚ ^ v“ bu^w“ ub
def
” Dx,y ¨ ¨ ¨

|w|a “ |u|a ` |v|a
def
” Dx,y ¨ ¨ ¨

49/58

MORE Σ1-DEFINABLE PROPERTIES
Dn : u“ aabanb^ v“ aban`1b^w“ ban`2b
def
” u P aaba˚b^ v“ aba˚b^w“ ba˚b

^
“

u,v,w PA˚b^ |u|a “ |v|a “ |w|a
‰

Dną 0 : u“ banb^ v“ ban`1b

def
” Dx,y,z :

Dm : x“ aabamb^y“ abam`1b^ z“ bam`b
^ u,v P ba˚b^ x ě uď y ě vď z

Dn : u“ an ^ v“ an`1 def
” Dx,y ¨ ¨ ¨

v“ a|u|a ” v“ πapuq
def
” Dx,y ¨ ¨ ¨

|u|a “ |v|a
def
” Dx,y ¨ ¨ ¨

u P a˚ ^ v“ bu^w“ ub
def
” Dx,y ¨ ¨ ¨

|w|a “ |u|a ` |v|a
def
” Dx,y ¨ ¨ ¨

49/58

MORE Σ1-DEFINABLE PROPERTIES

u factors as an0ban1 ¨ ¨ ¨bank and v“ ank
def
” Dx,y ¨ ¨ ¨

v P a˚ ^w“ uv
def
” Dx,y ¨ ¨ ¨

uďprefix v
def
” Dy P a˚ : Dxď v : x“ uy^ |x|a “ |v|a

w“ uv
def
” uďprefix w^ vďsuffix w^

ľ

cPA

|w|c “ |u|c ` |v|c

u P pabq˚ def
” Dx : x“ abu^ x“ uab

|u|a “ |v|b
def
” Dx,y ¨ ¨ ¨

Dn,m : u“ an ^ v“ am ^w“ an¨m def
” Dx,y ¨ ¨ ¨

QED: Diophantine sets can be defined in the Σ1 fragment

50/58

MORE Σ1-DEFINABLE PROPERTIES

u factors as an0ban1 ¨ ¨ ¨bank and v“ ank
def
” Dx,y ¨ ¨ ¨

v P a˚ ^w“ uv
def
” Dx,y ¨ ¨ ¨

uďprefix v
def
” Dy P a˚ : Dxď v : x“ uy^ |x|a “ |v|a

w“ uv
def
” uďprefix w^ vďsuffix w^

ľ

cPA

|w|c “ |u|c ` |v|c

u P pabq˚ def
” Dx : x“ abu^ x“ uab

|u|a “ |v|b
def
” Dx,y ¨ ¨ ¨

Dn,m : u“ an ^ v“ am ^w“ an¨m def
” Dx,y ¨ ¨ ¨

QED: Diophantine sets can be defined in the Σ1 fragment

50/58

DECIDABLE FRAGMENTS: BOUNDED LETTER

ALTERNATION

Assume that all quantifications put letter alternation bounds, i.e., have
the form

Dx P a˚
1a

˚
2 ¨ ¨ ¨a˚

k @y P b˚
1b

˚
2 ¨ ¨ ¨b˚

ℓ

Then the full logic is decidable in EXPSPACE

If 1 variable is unrestricted (NB: can be reused) and all other
variables are alternation bounded, the Σ1 fragment is NP-complete,
the Σ2-fragment is undecidable

If 2 variables are unrestricted and all other variables are alternation
bounded, the Σ1 fragment is in NEXPTIME.

If 3 variables are unrestricted, we can encode Diophantine sets

51/58

DECIDABLE FRAGMENTS: BOUNDED LETTER

ALTERNATION

Assume that all quantifications put letter alternation bounds, i.e., have
the form

Dx P a˚
1a

˚
2 ¨ ¨ ¨a˚

k @y P b˚
1b

˚
2 ¨ ¨ ¨b˚

ℓ

Then the full logic is decidable in EXPSPACE

If 1 variable is unrestricted (NB: can be reused) and all other
variables are alternation bounded, the Σ1 fragment is NP-complete,
the Σ2-fragment is undecidable

If 2 variables are unrestricted and all other variables are alternation
bounded, the Σ1 fragment is in NEXPTIME.

If 3 variables are unrestricted, we can encode Diophantine sets

51/58

DECIDABLE FRAGMENTS: BOUNDED LETTER

ALTERNATION

Assume that all quantifications put letter alternation bounds, i.e., have
the form

Dx P a˚
1a

˚
2 ¨ ¨ ¨a˚

k @y P b˚
1b

˚
2 ¨ ¨ ¨b˚

ℓ

Then the full logic is decidable in EXPSPACE

If 1 variable is unrestricted (NB: can be reused) and all other
variables are alternation bounded, the Σ1 fragment is NP-complete,
the Σ2-fragment is undecidable

If 2 variables are unrestricted and all other variables are alternation
bounded, the Σ1 fragment is in NEXPTIME.

If 3 variables are unrestricted, we can encode Diophantine sets

51/58

DECIDABLE FRAGMENTS: BOUNDED LETTER

ALTERNATION

Assume that all quantifications put letter alternation bounds, i.e., have
the form

Dx P a˚
1a

˚
2 ¨ ¨ ¨a˚

k @y P b˚
1b

˚
2 ¨ ¨ ¨b˚

ℓ

Then the full logic is decidable in EXPSPACE

If 1 variable is unrestricted (NB: can be reused) and all other
variables are alternation bounded, the Σ1 fragment is NP-complete,
the Σ2-fragment is undecidable

If 2 variables are unrestricted and all other variables are alternation
bounded, the Σ1 fragment is in NEXPTIME.

If 3 variables are unrestricted, we can encode Diophantine sets

51/58

DECIDABLE FRAGMENTS: BOUNDED LETTER

ALTERNATION

Assume that all quantifications put letter alternation bounds, i.e., have
the form

Dx P a˚
1a

˚
2 ¨ ¨ ¨a˚

k @y P b˚
1b

˚
2 ¨ ¨ ¨b˚

ℓ

Then the full logic is decidable in EXPSPACE

If 1 variable is unrestricted (NB: can be reused) and all other
variables are alternation bounded, the Σ1 fragment is NP-complete,
the Σ2-fragment is undecidable

If 2 variables are unrestricted and all other variables are alternation
bounded, the Σ1 fragment is in NEXPTIME.

If 3 variables are unrestricted, we can encode Diophantine sets

51/58

SIXTH PROBLEM: PIECEWISE COMPLEXITY

How do we describe words
via short subwords?

Joint work with M. Veron

52/58

DEFINING WORDS VIA THEIR SUBWORDS

x“ ABBA iff

$

&

%

AA ď x ^ AAA ď x
^ BB ď x ^ BBB ď x
^ BAB ď x ^ AAB ď x ^ BAA ď x

53/58

DEFINING WORDS VIA THEIR SUBWORDS

x“ ABBA iff

$

&

%

AA ď x ^ AAA ď x
^ BB ď x ^ BBB ď x
^ BAB ď x ^ AAB ď x ^ BAA ď x

Thus ABBA can be defined via subword constraints of length at most 3

53/58

DEFINING WORDS VIA THEIR SUBWORDS

x“ ABBA iff

$

&

%

AA ď x ^ AAA ď x
^ BB ď x ^ BBB ď x
^ BAB ď x ^ AAB ď x ^ BAA ď x

Thus ABBA can be defined via subword constraints of length at most 3

Other examples: ABRACADABRA is definable with length-4 constraints,
so too is THE WORKS OF SHAKESPEARE

53/58

DEFINING WORDS VIA THEIR SUBWORDS

x“ ABBA iff

$

&

%

AA ď x ^ AAA ď x
^ BB ď x ^ BBB ď x
^ BAB ď x ^ AAB ď x ^ BAA ď x

Thus ABBA can be defined via subword constraints of length at most 3

Other examples: ABRACADABRA is definable with length-4 constraints,
so too is THE WORKS OF SHAKESPEARE

We write hpABRACADABRAq “ 4 and refer to the “piecewise complexity”
of a word

How do you compute hpuq? What are its main properties?

53/58

SOME MORE MOTIVATIONS

Piecewise complexity originally defined for piecewise-testable
languages (Karandikar & S. 2019)
This allowed proving elementary complexity upper bounds for the
aforementioned FO2 logic of subwords

Piecewise-testable languages (Imre Simon 1972) are the languages
definable by subword constraints
Also: definable in the BΣ1 fragment of the first-order logic of words
Also: the languages with a J-trivial syntactic monoid

Here hpuq and hpLq is the number of variables needed in a BΣ1
formula defining u or L

These notions can be, and have been, generalized to many settings:
trees, graphs, infinite words, etc.

54/58

SOME MORE MOTIVATIONS

Piecewise complexity originally defined for piecewise-testable
languages (Karandikar & S. 2019)
This allowed proving elementary complexity upper bounds for the
aforementioned FO2 logic of subwords

Piecewise-testable languages (Imre Simon 1972) are the languages
definable by subword constraints
Also: definable in the BΣ1 fragment of the first-order logic of words
Also: the languages with a J-trivial syntactic monoid

Here hpuq and hpLq is the number of variables needed in a BΣ1
formula defining u or L

These notions can be, and have been, generalized to many settings:
trees, graphs, infinite words, etc.

54/58

SOME MORE MOTIVATIONS

Piecewise complexity originally defined for piecewise-testable
languages (Karandikar & S. 2019)
This allowed proving elementary complexity upper bounds for the
aforementioned FO2 logic of subwords

Piecewise-testable languages (Imre Simon 1972) are the languages
definable by subword constraints
Also: definable in the BΣ1 fragment of the first-order logic of words
Also: the languages with a J-trivial syntactic monoid

Here hpuq and hpLq is the number of variables needed in a BΣ1
formula defining u or L

These notions can be, and have been, generalized to many settings:
trees, graphs, infinite words, etc.

54/58

SOME DEFINITIONS: SIMON’S CONGRUENCE

Def. [Simon’s congruence, 1972] u„k v if u and v have the same
subwords of length ď k

Def. [Simon and Sakarovich, 1983] δpu,vq def
“ max tk | u„k vu

One wants to compute a distinguisher between two words u,v, or to
compute δpu,vq, or to check whether u„k v

In some applications (DNA strings, program executions, ..) the words
can be very long

Simon claimed he had a linear Op|uv|q algorithm. A bilinear
Op|uv| ¨ |A|q algorithm was given by Fleischer and Kufleitner (2018),
improved to Op|uv|q by Barker, Fleischmann et al. (2020).

55/58

PIECEWISE COMPLEXITY AND SIMON’S CONGRUENCE

Def. hpuq
def
“ mintk | @v : u„k v =ñ u“ vu

E.g. for u“ ABRACADABRA: hpuq “ 4

56/58

PIECEWISE COMPLEXITY AND SIMON’S CONGRUENCE

Def. hpuq
def
“ mintk | @v : u„k v =ñ u“ vu

E.g. for u“ ABRACADABRA: hpuq “ 4

Main tool: r and ℓ “side distance” functions:

rpu,tq def
“ δpu,utq ℓpt,uq

def
“ δptu,uq

56/58

PIECEWISE COMPLEXITY AND SIMON’S CONGRUENCE

Def. hpuq
def
“ mintk | @v : u„k v =ñ u“ vu

E.g. for u“ ABRACADABRA: hpuq “ 4

Main tool: r and ℓ “side distance” functions:

rpu,tq def
“ δpu,utq ℓpt,uq

def
“ δptu,uq

r and ℓ allow a reformulation of our computational problem:

hpuq “ max
u“u1u2

aPA

rpu1,aq ` ℓpa,u2q `1

56/58

RECURSIVE ALGORITHM FOR SIDE FUNCTIONS

rpub,aq “

$

’

’

’

&

’

’

’

%

0 if a R ub

1` rpu,aq if a“ b

min

#

1` rpu1,bq

rpu,aq

+

if a‰ b and u“ u1au2 with a R u2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

w A B B A C C B C C A B A A B C

rpi,Aq 0 1 1 1 2 1 1 1 1 1 2 2 3 4 4 3

ℓpA, iq 4 3 3 3 2 2 2 2 2 3 2 2 1 0 0 0

rpi,Bq 0 0 1 2 2 1 1 2 2 2 2 3 3 3 4 3

ℓpB, iq 4 5 4 3 3 3 3 2 2 2 2 1 1 1 0 0

rpi,Cq 0 0 0 0 0 1 2 2 3 4 2 2 2 2 2 3

ℓpC, iq 3 3 3 3 5 4 3 3 2 1 1 1 1 1 1 0

In this example, hpwq “ 6

Prop. hpuq can be computed in bilinear time Op|A| ¨ |u|q

57/58

RECURSIVE ALGORITHM FOR SIDE FUNCTIONS

rpub,aq “

$

’

’

’

&

’

’

’

%

0 if a R ub

1` rpu,aq if a“ b

min

#

1` rpu1,bq

rpu,aq

+

if a‰ b and u“ u1au2 with a R u2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

w A B B A C C B C C A B A A B C

rpi,Aq 0 1 1 1 2 1 1 1 1 1 2 2 3 4 4 3

ℓpA, iq 4 3 3 3 2 2 2 2 2 3 2 2 1 0 0 0

rpi,Bq 0 0 1 2 2 1 1 2 2 2 2 3 3 3 4 3

ℓpB, iq 4 5 4 3 3 3 3 2 2 2 2 1 1 1 0 0

rpi,Cq 0 0 0 0 0 1 2 2 3 4 2 2 2 2 2 3

ℓpC, iq 3 3 3 3 5 4 3 3 2 1 1 1 1 1 1 0

In this example, hpwq “ 6

Prop. hpuq can be computed in bilinear time Op|A| ¨ |u|q

57/58

RECURSIVE ALGORITHM FOR SIDE FUNCTIONS

rpub,aq “

$

’

’

’

&

’

’

’

%

0 if a R ub

1` rpu,aq if a“ b

min

#

1` rpu1,bq

rpu,aq

+

if a‰ b and u“ u1au2 with a R u2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

w A B B A C C B C C A B A A B C

rpi,Aq 0 1 1 1 2 1 1 1 1 1 2 2 3 4 4 3

ℓpA, iq 4 3 3 3 2 2 2 2 2 3 2 2 1 0 0 0

rpi,Bq 0 0 1 2 2 1 1 2 2 2 2 3 3 3 4 3

ℓpB, iq 4 5 4 3 3 3 3 2 2 2 2 1 1 1 0 0

rpi,Cq 0 0 0 0 0 1 2 2 3 4 2 2 2 2 2 3

ℓpC, iq 3 3 3 3 5 4 3 3 2 1 1 1 1 1 1 0

In this example, hpwq “ 6

Prop. hpuq can be computed in bilinear time Op|A| ¨ |u|q

57/58

CONCLUDING REMARKS

Subwords appear everywhere.

Surprisingly many basic questions are still unanswered, even
unasked.

I have more subword-based puzzles if you’re interested . . .

58/58

