

ω -regular Energy Problems

GT DAAL 2024

Sven Dziadek¹ Uli Fahrenberg²

Uli Fahrenberg² Philipp Schlehuber-Caissier²

Inria Paris

LRE, EPITA, France

Energy Büchi Problem

- Timed automata
- Büchi condition
- weighted over integers
 - negative weight: consumption of energy
 - positive weight: collection of energy
- energy bounded
 - ▶ from below (battery must not become empty)
 - weakly from above (maximal battery capacity)

Energy Büchi Problem

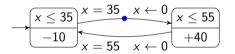
Does a Büchi accepted feasible run exist?

energy always within bound [0, b]

weak upper bound b

Remember, Remember, the 15 September

- ... 2008
- Bouyer, F., Larsen, Markey, Srba: Infinite Runs in Weighted Timed Automata with Energy Constraints, FORMATS 2008
- Dziadek, Fahrenb., Schlehuber: Energy Büchi Problems, FM 2023:
 - extend to Büchi conditions
 - fix problems
 - ▶ implement everything: TChecker + Spot
- Dziadek, Fahrenb., Schlehuber: ω -regular Energy Problems, submitted
 - extend to Parity condition
 - fix more problems
 - add trace extraction
 - update implementation

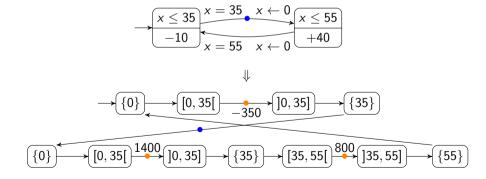


Weighted Timed Büchi Automata

Weighted Timed Büchi Automata

Weighted Timed Büchi Automata

- generalized Büchi acceptance on transitions
- (only) locations are weighted


Note: we only handle one clock

Energy problems **undecidable** for **four** clocks (Bouyer, Larsen, Markey 2014) **open** for **two** or **three** clocks

Corner-Point Abstraction

One-clock timed automaton \rightarrow untimed automaton

- TChecker computes the zone graph
- compute corner-point abstraction (Behrmann, Fehnker, Hune et al. 2001)
- Zeno-exclusion

Weighted Büchi Automata

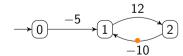
Weighted Büchi Automata

Weights

Given values: c: initial credit

b: weak upper bound

Weights: $e_0 = \min(b, c)$


 $e_{i+1} = \min(b, e_i + w_i)$

for transition weight w_i

Feasible Run

Always: $e_i \ge 0$

Example

Feasible with $c \ge 5$ and $b \ge 10$.

Details: Bellman-Ford & Büchi

Bellman-Ford (BF)

Recall: BF finds **shortest** paths \Rightarrow Invert to find **maximal** energy

BF relaxes a distance approximation until solution is found

BF asserts that no "negative loops" exist \Leftrightarrow here, positive cycles are desired

BF not aware of Büchi acceptance

Our solution:

- Decompose strongly connected components
- Treat accepting back-edges one-by-one
- modify BF for "energy positive" loops

Our Algorithm

Take a weighted Büchi automaton:

- find strongly connected components (SCC) (we use Couvreur)
- degeneralize SCCs (produces Büchi accepting back edges)
- with modified Bellman-Ford search for feasible lassos:
 - on original graph for maximal prefix energy
 - in SCCs for non-negative cycles including a Back-edge

Note: Energy and Büchi condition cannot be fully separated

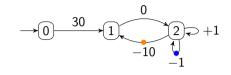
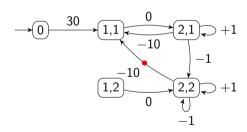
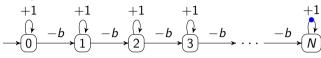
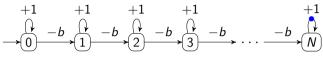
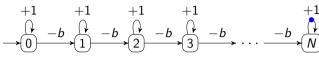


Figure: Original WBA

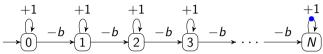

Figure: Degeneralizing SCC {1,2} with level 1 rooted in

Example

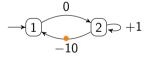


Example

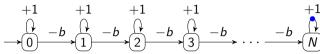
Get weak upper bound \boldsymbol{b} out of complexity


Example

Get weak upper bound b out of complexity

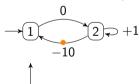

⇒ After each iteration, positive loop are *pumped*

Example

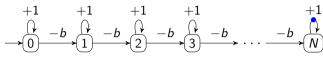


Get weak upper bound b out of complexity \Rightarrow After each iteration, positive loop are pumped

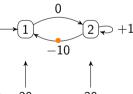
Example (for c = 30, b = 30)



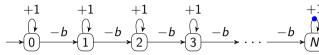
Example


Get weak upper bound b out of complexity \Rightarrow After each iteration, positive loop are pumped

Example (for c = 30, b = 30)

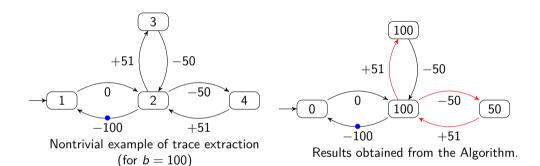

Max energy: 30

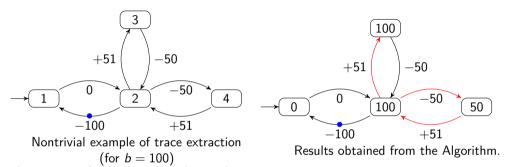
Example


Get weak upper bound b out of complexity \Rightarrow After each iteration, positive loop are *pumped*

Example (for c = 30, b = 30)

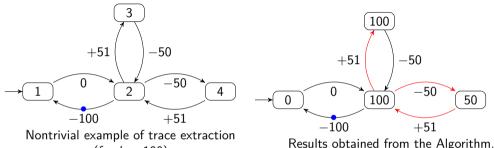
Max energy: 30




Get weak upper bound b out of complexity

 \Rightarrow After each iteration, positive loop are *pumped*

Challenges trace extraction

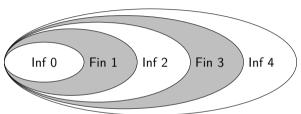


Challenges trace extraction

Important information is lost during the iterations.

Challenges trace extraction

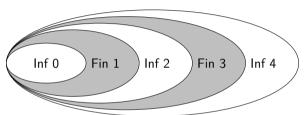
(for b = 100)


Results obtained from the Algorithm.

Important information is lost during the iterations.

⇒ Storing all predecessors and launch an adapted backwards-forward search.

From Büchi to Parity


Max-Even 5

Parity condition for priorities up to 4: $Inf(4) \mid (Fin(3) \& (Inf(2) \mid (Fin(1) \& Inf(0))))$

From Büchi to Parity

Max-Even 5

Parity condition for priorities up to 4: $Inf(4) \mid (Fin(3) \& (Inf(2) \mid (Fin(1) \& Inf(0))))$

 \Rightarrow Reduce to Büchi case from most to least important color

Conclusion

Results on Energy Büchi problems

- 1. Weighted ω -regular automata
 - Modified Bellman-Ford with Couvreur's algorithm
- 2. One-clock weighted timed ω -regular automata
 - Reduce to 1. using corner-point abstraction
- 3. Solved the trace extraction problem

All algorithms are implemented using TChecker and Spot

Future Work

- edge weights
 - ▶ Bouyer, F., Larsen, Markey: *Timed automata with observers under energy constraints*, HSCC 2010
- Avoid iteration over all maximal states.
- parametric problem: synthesize b and/or c
 - F., Juhl, Larsen, Srba: Energy Games in Multiweighted Automata, ICTAC 2011
 - ► (in some cases that's easier!)
- implement everything!