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Let’s start with pictures

April 14 to 16, 2011 — Tornado outbreak in USA — 43 deaths



Let’s start with pictures

April 14 to 16, 2011 — Tornado outbreak in USA — 43 deaths
Could we have predicted this?



Understanding climate

<>Large-scale simulations help
understanding climate

<>Require high performance



HPC simulations on BlueWaters

BLUE WATERS

SUSTAINED PETASCALE I:OHPI.HIHG -

Context: Joint Laboratory for Petascale
Computing, targeting Blue Waters
<> More than 300.000 cores

<11 petaflops (10~ op/sec) peak performance
(http://www.ncsa.illinois.edu/BlueWaters/)



HPC simulations on BlueWaters
BLUE WATERS

SUSTAINED PETASCALE BOHPUIIIG -

Context: Joint Laboratory for Petascale
Computing, targeting Blue Waters
<> More than 300.000 cores

<11 petaflops peak performance

<>Simulations generating extremely large amounts of data
(terabytes every minute)



How to handle
such large amounts of data?
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<>How to efficiently store and move data?
<>How to index, process, compress these data?
<>How to analyze, visualize and understand them?
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Outline

1. 1/0 and data management in HPC
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<>Periodic data generation from the simulation
<-Storage in a parallel file system
<> Offline analysis and visualization [Childs,2010]

~10.000
cores
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The key component:
Parallel File Systems

= Zeprs-
[Carns et al.,2000] [Schmuck et al.,2002]
+u-s-tre-

[Donovan et al.,2003]

<>Deployed on a set of dedicated servers

<>Shared by all users (e.g. 100 GPFS servers on Blue Waters)

< Breaks files in chunks distributed across servers
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Handling I/O in simulations:
Two main approaches

Independent I/O Collective I/O
(file-per-process) Q Q
VIR

y

<>Huge metadata overhead <>Requires synchronization
<>Hard to read back <>Hard to implement

<>Easy (natural) to implement <>Optimizes communications




Problem #1: Unbalanced load,
Periodic bursts of 1/0O

19:35 19: 40 19:45 19:50 19:55 20: 00 20:05 20:10 20:15 20:20 20:25

“Cardiogram” of a data server
(network activity when running a simulation) 13



Problem #2: 1/0 bottleneck

100.000+
cores

1001/0
servers

<> Too many files: pressure on the metadata servers
(e.g. Blue Waters 300.000 files/min)

<> Too much data: pressure on the data servers
(e.g. several Terabytes per minute)

14



Problem #3: data analysis

<-All data are not useful
<>How to process data, adapt data layout?
<>When, where and how to perform visualization?

<> From offline visualization to inline visualization?
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Problem #4: 1/0 jitter
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/O variability (or “jitter” )

Variability = difference between write time
<>From a process to another

<>From a write phase to another
Leads to unpredictable run time!
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/O variability (or “jitter” )

Variability = difference between write time
<>From a process to another

<>From a write phase to another
Leads to unpredictable run time!

Origins of jitter
<>Network and file system contentions between processes

< Internal interferences (processes of the same application)
<> External interferences (cross-applications)
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/O variability (or “jitter” )

Variability = difference between write time
<>From a process to another

<>From a write phase to another

Leads to unpredictable run time!

Origins of jitter

<>Network and file system contentions between processes
< Internal interferences (processes of the same application)
<> External interferences (cross-applications)

Understanding the jitter
<>Statistical analysis (variance): intractable
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How to interpret 1/O variability?

Start writing
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How to interpret 1/O variability?

Start writing Stop writing
Process ID
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Let’s sort this trace
<> White part corresponds to wasted time
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Contribution #1:

Graphical comparison of traces
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Contribution #1: Summary

<> A methodology to visualize and interpret variability
<> Used on a set of 400 experiments (230400 mesures)

< Validity: from 400 MB/s to 21 GB/s on Grid’5000
(with PVFS and the IOR benchmark) by playing with 3 different
parameters
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Contribution #1: Summary

<> A methodology to visualize and interpret variability
<> Used on a set of 400 experiments (230400 mesures)

< Validity: from 400 MB/s to 21 GB/s on Grid’5000
(with PVFS and the IOR benchmark) by playing with 3 different
parameters

Tuning a parallel file system is hard,
couldn’t we simply hide this variability ?
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Outline

3. Damaris: our new approach to I/0
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On multicore SMP nodes...

Leave a core, go faster!
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The Damaris approach:
dedicated I/O cores
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The Damaris approach:
dedicated I/O cores

<>Use the SMP’s intra-node shared memory

Core 1 Core 2 Core 3 Core 4

Compute <
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Note: these behaviors are periodic



The Damaris approach:

<>Overlap I/0 with computation
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Note: these behaviors are periodic
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The Damaris approach:

<>Spare time in the |/O core
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Damaris: architecture overview

Damaris Core

------------------
- .~

'l
Compute N ' Metadata Index
Core \
P \ Shared '
______l..---P Memory |4~ g:::"::' ®
Compute [ | Segment [ .. y
Core S :
N——
u Event
n Processing

Engine .
/ . Action
Compute —~ Event Queue °, Set
Core N S @ —

Persistency

HDF5

Within one multicore node

34



Damaris: implementation

<> Written in C++ (currently 3400 lines of code)

<> Boost library for interprocess communications
and shared memory

<> Client-side libraries for C, C++ and Fortran

<> External XML configuration
(e.g. configuring buffer size, events, actions)

<> Take a look! http://damaris.gforge.inria.fr/
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The Damaris approach: benefits

<> Hides |/O-related costs by overlapping computation and 1/0
<> Fewer files thanks to data aggregation

<> No synchronization compared to collective I/O

<> No more jitter

<> Spares time
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The Damaris approach: benefits

<> Hides |/O-related costs by overlapping computation and 1/0
<> Fewer files thanks to data aggregation

<> No synchronization compared to collective I/O

<> No more jitter

<> Spares time

How to use the spare time?
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The Damaris approach: benefits

<> Hides |/O-related costs by overlapping computation and 1/0
<> Fewer files thanks to data aggregation

<> No synchronization compared to collective I/O

<> No more |/O jitter

<> Spares time

How to use the spare time? |
<> Custom plugin system: nivord, LT
<>Data post-processing, T L
<Indexing, analysis computed ey
<>End-to-end scientific process

<>Connect visualization/analysis tools
=>» inline visualization 38
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The CM1 tornado simulation

<> CM1 = Georges Bryan’s Cloud model version 1
<> Three-dimensional, non-hydrostatic, non-linear, time-dependent numerical
model suitable for idealized studies of atmospheric phenomena

<> Currently writes using HDF5: file-per-process

<> Development version allowing collective-1/0
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Integration with the CM1
tornado simulation

<> On Grid’5000: French national testbed (24 cores/node, 672 cores), with PVFS,
comparison with collective 1/0
<> Communication overhead =2 leaving a core is more efficient
<> No synchronization
<> 6 times higher write throughput

P,
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Integration with the CM1
tornado simulation

<> BluePrint: Power5 BlueWaters interim system at NCSA (16 cores/node, 1024
cores), with GPFS, comparison with file-per-process approach
<> On 64 nodes =@ 64 files instead of 1024
<> More efficient data aggregation

PFS--
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Write time (sec)

Integration with the CM1
tornado simulation

Time of a single I/O phase

with the CM1 atmospheric model on 1024 cores of a Power5 cluster
(16 cores per node)
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Integration with the CM1
tornado simulation

<> In both cases:

<>Spare time usage
<>Data layout adaptation for subsequent analysis
<>Overhead-free compression (600%)

<>No more I/0 jitter and I/O related costs
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Conclusion

< Contribution #1 : study and representation of I/O variability
< Allows simple and fast study of parameters influence
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Conclusion

< Contribution #1 : study and representation of I/O variability
< Allows simple and fast study of parameters influence

< Contribution #2 : the Damaris approach
<> Dedicates one core to I/O
< Hides I/O variability and overhead
<> Achieves better throughput (6x on G5k)
< Aggregates and compress data (600%)
< Tested on Grid’5000 and BluePrint
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Outcomes of this work

< Poster presented at ICS’11 (June 1-3, Tucson, AZ)
<> 2" price at the ICS section of the ACM

Student Research Competition I c s

201
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Future work

< Submission to IPDPS 2012

<> Integrating Damaris in other simulations:
Enzo, GTC, CESM, WREF...

< Testing at larger scales (Kraken)

< Using Damaris to perform inline visualization
< ...
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