Toward new I/O Approaches for Scalable
Post-petascale HPC Simulations

Matthieu Dorier
ENS Cachan Brittany extension
matthieu.dorier@eleves.bretagne.ens-cachan.fr
KerData Team
Advised by Gabriel Antoniu and Luc Bougé

ZIINRIA B Y5 @3 RISA G

Let’s start with pictures

April 14 to 16, 2011 — Tornado outbreak in USA — 43 deaths

Let’s start with pictures

April 14 to 16, 2011 — Tornado outbreak in USA — 43 deaths
Could we have predicted this?

Understanding climate

<>Large-scale simulations help
understanding climate

<>Require high performance

HPC simulations on BlueWaters

BLUE WATERS

SUSTAINED PETASCALE I:OHPI.HIHG -

Context: Joint Laboratory for Petascale
Computing, targeting Blue Waters
<> More than 300.000 cores

<11 petaflops (10~ op/sec) peak performance
(http://www.ncsa.illinois.edu/BlueWaters/)

HPC simulations on BlueWaters
BLUE WATERS

SUSTAINED PETASCALE BOHPUIIIG -

Context: Joint Laboratory for Petascale
Computing, targeting Blue Waters
<> More than 300.000 cores

<11 petaflops peak performance

<>Simulations generating extremely large amounts of data
(terabytes every minute)

How to handle
such large amounts of data?

ao’\S _ LE
Vize

0 .)
- [7(x)- YOS M[r(g).‘;;mu;m. [

2 Slx 7(z) ":,J‘; i
[5) tn1fs0) /04 ‘

" 9 IT(.r) (.01 Ij’m"' A

{ \1T(‘:)’(’)9k. éraﬂ 0)

<>How to efficiently store and move data?
<>How to index, process, compress these data?
<>How to analyze, visualize and understand them?

A e

Outline

/O and data management in HPC
Understanding /0 jitter
Damaris: our new approach to 1/0

Experimental evaluations

. Conclusion

Outline

1. 1/0 and data management in HPC

100.000+
cores

Standard I/O flow

[

_

Simulation

~

J

PetaBytes of
data

]

= 05

Filesystem

4 N

Visualization

. J

=1}

<>Periodic data generation from the simulation
<-Storage in a parallel file system
<> Offline analysis and visualization [Childs,2010]

~10.000
cores

10

The key component:
Parallel File Systems

= Zeprs-
[Carns et al.,2000] [Schmuck et al.,2002]
+u-s-tre-

[Donovan et al.,2003]

<>Deployed on a set of dedicated servers

<>Shared by all users (e.g. 100 GPFS servers on Blue Waters)

< Breaks files in chunks distributed across servers

11

Handling I/O in simulations:
Two main approaches

Independent I/O Collective I/O
(file-per-process) Q Q
VIR

y

<>Huge metadata overhead <>Requires synchronization
<>Hard to read back <>Hard to implement

<>Easy (natural) to implement <>Optimizes communications

Problem #1: Unbalanced load,
Periodic bursts of 1/0O

19:35 19: 40 19:45 19:50 19:55 20: 00 20:05 20:10 20:15 20:20 20:25

“Cardiogram” of a data server
(network activity when running a simulation) 13

Problem #2: 1/0 bottleneck

100.000+
cores

1001/0
servers

<> Too many files: pressure on the metadata servers
(e.g. Blue Waters 300.000 files/min)

<> Too much data: pressure on the data servers
(e.g. several Terabytes per minute)

14

Problem #3: data analysis

<-All data are not useful
<>How to process data, adapt data layout?
<>When, where and how to perform visualization?

<> From offline visualization to inline visualization?

15

Problem #4: 1/0 jitter

Al S

Outline

/O and data management in HPC

Understanding 1/0 jitter
Damaris: our new approach to I/O

Experimental evaluations

. Conclusion

17

/O variability (or “jitter”)

Variability = difference between write time
<>From a process to another

<>From a write phase to another
Leads to unpredictable run time!

18

/O variability (or “jitter”)

Variability = difference between write time
<>From a process to another

<>From a write phase to another
Leads to unpredictable run time!

Origins of jitter
<>Network and file system contentions between processes

< Internal interferences (processes of the same application)
<> External interferences (cross-applications)

19

/O variability (or “jitter”)

Variability = difference between write time
<>From a process to another

<>From a write phase to another

Leads to unpredictable run time!

Origins of jitter

<>Network and file system contentions between processes
< Internal interferences (processes of the same application)
<> External interferences (cross-applications)

Understanding the jitter
<>Statistical analysis (variance): intractable

20

How to interpret 1/O variability?

Start writing

Process ID

99
92
85
78
71
64
57
50
43
36
29
22
15

8

1

Stop writing

0

0,5

1

1,5

2

2,5

3

3,5

Average = X, Standard deviation =Y ... OK, and?

4 4,5

Time (sec)

21

How to interpret 1/O variability?

Start writing Stop writing
Process ID

99
92
85
78
71
64
57
50
43
36
29
22
15

8

1F
0

05 1 1,5 2 2,5 3 3,5 4 45 Time (sec)

Let’s sort this trace
<> White part corresponds to wasted time

22

Contribution #1:

Graphical comparison of traces

el U V| Y N

5.96 GB/s 8.04 GB/s 5.22 GB/s 6.24 GB/s 4.55 GB/s

8MB.i‘i

2.46 GB/s 4.36 GB/s 7.27 GB/s 2.23 GB/s 7.36 GB/s

“HARARR

7.87 GB/s 7.17 GB/s 7.87 GB/s 7.91 GB/s 7.86 GB/s

“HEAL N R

4.77 GB/s 6.92 GB/s 3.06 GB/s 8.00 GB/s 8.15 GB/s

“"AARAR

1.8 GB/s 991 MB/s 922 MB/s 1.58 GB/s 1.62 GB/s

0.3 GB/s 9.5 GB/s

Color scale for aggregate throughput

Exp #1

Exp #2

Exp #3

Exp #4

Exp #5

23

Contribution #1: Summary

<> A methodology to visualize and interpret variability
<> Used on a set of 400 experiments (230400 mesures)

< Validity: from 400 MB/s to 21 GB/s on Grid’5000
(with PVFS and the IOR benchmark) by playing with 3 different
parameters

24

Contribution #1: Summary

<> A methodology to visualize and interpret variability
<> Used on a set of 400 experiments (230400 mesures)

< Validity: from 400 MB/s to 21 GB/s on Grid’5000
(with PVFS and the IOR benchmark) by playing with 3 different
parameters

Tuning a parallel file system is hard,
couldn’t we simply hide this variability ?

25

Outline

3. Damaris: our new approach to I/0

26

On multicore SMP nodes...

Leave a core, go faster!

27

Compute <

Compute <

The Damaris approach:
dedicated I/O cores

amaris

Compute<

VT

Push (IPC)-t

AN\L_DN\ |

Compute<

Note: these behaviors are periodic

Process
and

Write
(file)

28

The Damaris approach:
dedicated I/O cores

<>Use the SMP’s intra-node shared memory

Core 1 Core 2 Core 3 Core 4

Compute <
Compute<

rrier
]
arrier Process
’ and
Write
Compute< (file)
Compute<
\.
\. _4 _4 \J

Note: these behaviors are periodic

The Damaris approach:

<>Overlap I/0 with computation

Core 1 Core 2

Compute <

Core 3 Core 4

rrier
arrier =

Compute <

VT

Compute<

Push (IPC)-t

Compute<

dedicated I/O cores

amaris

EN\H

Note: these behaviors are periodic

30

The Damaris approach:

<>Spare time in the |/O core

Core 1 Core 2

Compute <

Core 3 Core 4

rrier
arrier =

Compute <

VT

Compute<

Push (IPC)-t

Compute<

dedicated I/O cores

amaris

EN\H

Note: these behaviors are periodic

Process
and

Write
(file)

31

MY

Compute
Core

—

MY

Compute
Core

Compute
Core

Damaris Core

Damaris: architecture overview

- .~

Shared
Memory
Segment

Metadata Index

"
< ----

Event

External
Gateway

Processing

Engine

/ N
-~ Event Queue *

Persistency :

Action
Set

‘ HDFSI

Within one multicore node

32

MY

Compute
Core

—

MY

Compute
Core

Damaris: architecture overview

Damaris Core

- .~

Compute
Core

:' Metadata Index '

\ Shared :
______l________, Memory |4~ gx:emal
[\ Segment | 4. ... a e\:vay

Event
Processing
/ y Engine Action
—~ EventQu A Set
Persistency :

‘ HDFSI

Within one multicore node

33

Damaris: architecture overview

Damaris Core

- .~

'l
Compute N ' Metadata Index
Core \
P \ Shared '
______l..---P Memory |4~ g:::"::' ®
Compute [| Segment [.. y
Core S :
N——
u Event
n Processing

Engine .
/ . Action
Compute —~ Event Queue °, Set
Core N S @ —

Persistency

HDF5

Within one multicore node

34

Damaris: implementation

<> Written in C++ (currently 3400 lines of code)

<> Boost library for interprocess communications
and shared memory

<> Client-side libraries for C, C++ and Fortran

<> External XML configuration
(e.g. configuring buffer size, events, actions)

<> Take a look! http://damaris.gforge.inria.fr/

35

The Damaris approach: benefits

<> Hides |/O-related costs by overlapping computation and 1/0
<> Fewer files thanks to data aggregation

<> No synchronization compared to collective I/O

<> No more jitter

<> Spares time

36

The Damaris approach: benefits

<> Hides |/O-related costs by overlapping computation and 1/0
<> Fewer files thanks to data aggregation

<> No synchronization compared to collective I/O

<> No more jitter

<> Spares time

How to use the spare time?

37

The Damaris approach: benefits

<> Hides |/O-related costs by overlapping computation and 1/0
<> Fewer files thanks to data aggregation

<> No synchronization compared to collective I/O

<> No more |/O jitter

<> Spares time

How to use the spare time? |
<> Custom plugin system: nivord, LT
<>Data post-processing, T L
<Indexing, analysis computed ey
<>End-to-end scientific process

<>Connect visualization/analysis tools
=>» inline visualization 38

A

Outline

/0 and data management in HPC
Understanding 1/0 jitter

Damaris: our new approach to I/0
Experimental evaluations

Conclusion

39

The CM1 tornado simulation

<> CM1 = Georges Bryan’s Cloud model version 1
<> Three-dimensional, non-hydrostatic, non-linear, time-dependent numerical
model suitable for idealized studies of atmospheric phenomena

<> Currently writes using HDF5: file-per-process

<> Development version allowing collective-1/0

40

Integration with the CM1
tornado simulation

<> On Grid’5000: French national testbed (24 cores/node, 672 cores), with PVFS,
comparison with collective 1/0
<> Communication overhead =2 leaving a core is more efficient
<> No synchronization
<> 6 times higher write throughput

P,

41

Integration with the CM1
tornado simulation

<> BluePrint: Power5 BlueWaters interim system at NCSA (16 cores/node, 1024
cores), with GPFS, comparison with file-per-process approach
<> On 64 nodes =@ 64 files instead of 1024
<> More efficient data aggregation

PFS--

42

Write time (sec)

Integration with the CM1
tornado simulation

Time of a single I/O phase

with the CM1 atmospheric model on 1024 cores of a Power5 cluster
(16 cores per node)

10
° Taeme NO more 1/0 jitter,
6 Maximum
) — -oemais O mMore 1/O overhead!
2 T — —
o = re — A
0 5 10 15 20 25 30
Aggregate data size (GB)
250
200
Spares more than = .
o g 100 [| u?min
75% of time fordata *© . g
. 0 — = N
prOCESS"\g 49 MB 58GB 15.1GB 24.7 GB

Raw output size

43

Integration with the CM1
tornado simulation

<> In both cases:

<>Spare time usage
<>Data layout adaptation for subsequent analysis
<>Overhead-free compression (600%)

<>No more I/0 jitter and I/O related costs

44

L& e

Outline

/0 and data management in HPC
Understanding I/0 jitter

Damaris: our new approach to I/O
Experimental evaluations

Conclusion

45

Conclusion

< Contribution #1 : study and representation of I/O variability
< Allows simple and fast study of parameters influence

46

Conclusion

< Contribution #1 : study and representation of I/O variability
< Allows simple and fast study of parameters influence

< Contribution #2 : the Damaris approach
<> Dedicates one core to I/O
< Hides I/O variability and overhead
<> Achieves better throughput (6x on G5k)
< Aggregates and compress data (600%)
< Tested on Grid’5000 and BluePrint

47

Outcomes of this work

< Poster presented at ICS’11 (June 1-3, Tucson, AZ)
<> 2" price at the ICS section of the ACM

Student Research Competition I c s

201

48

Outcomes of this work

< Poster presented at ICS’11 (June 1-3, Tucson, AZ)
<> 2" price at the ICS section of the ACM

Student Research Competition I c s

201

Future work

< Submission to IPDPS 2012

<> Integrating Damaris in other simulations:
Enzo, GTC, CESM, WREF...

< Testing at larger scales (Kraken)

< Using Damaris to perform inline visualization
< ...

49

People involved in this work:

Gabriel

Antoniu
5 INRIA Rennes
_hFranck |
Cappello NCSA, UIUC
INRIA Saclay Eaﬂ“'”
Dorier
ENS Cachan
\‘.\\“ 1gh!
Semeraro Robert

Wilhelmson

Thank you, questions? neauuc

NCSA, UIUC

This work is conducted in the context of
the Joint INRIA/UIUC Laboratory for Petascale Computing 50

