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April	14	to	16,	2011	–	Tornado	outbreak	in	USA	–	43	deaths	
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Let’s	start	with	pictures	
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Could	we	have	predicted	this?	
3	

Let’s	start	with	pictures	



Understanding	climate	
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² Large-scale	simulaNons	help	
understanding	climate	

² Require	high	performance	



HPC	simulaNons	on	BlueWaters	
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Context:	Joint	Laboratory	for	Petascale	
Compu>ng,	targeNng	Blue	Waters	
² More	than	300.000	cores	
² 11	petaflops	(1015	op/sec)	peak	performance	

(h-p://www.ncsa.illinois.edu/BlueWaters/)	



HPC	simulaNons	on	BlueWaters	
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Context:	Joint	Laboratory	for	Petascale	
Compu>ng,	targeNng	Blue	Waters	
² More	than	300.000	cores	
² 11	petaflops	peak	performance	

² SimulaCons	generaCng	extremely	large	amounts	of	data	
(terabytes	every	minute)	



How	to	handle		
such	large	amounts	of	data?	
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² How	to	efficiently	store	and	move	data?	
² How	to	index,	process,	compress	these	data?	
² How	to	analyze,	visualize	and	understand	them?	
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Standard	I/O	flow	
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100.000+	
cores	

PetaBytes	of	
data	 ~	10.000	

cores	

² Periodic	data	generaNon	from	the	simulaNon	
² Storage	in	a	parallel	file	system	
² Offline	analysis	and	visualizaNon	[Childs,2010]	



The	key	component:		
Parallel	File	Systems	
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GPFS	

² Deployed	on	a	set	of	dedicated	servers	

² Shared	by	all	users	(e.g.	100	GPFS	servers	on	Blue	Waters)	

² Breaks	files	in	chunks	distributed	across	servers	

[Carns	et	al.,2000]	 [Schmuck	et	al.,2002]	

[Donovan	et	al.,2003]	



Handling	I/O	in	simulaNons:	
Two	main	approaches	
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															Independent	I/O																														CollecCve	I/O	
															(file-per-process)	

² Requires	synchronizaNon	
² Hard	to	implement	
² OpNmizes	communicaNons	

² Huge	metadata	overhead	
² Hard	to	read	back	
² Easy	(natural)	to	implement	



Problem	#1:	Unbalanced	load,	
Periodic	bursts	of	I/O	
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“Cardiogram”	of	a	data	server	
(network	acNvity	when	running	a	simulaNon)	



Problem	#2:	I/O	bo-leneck	
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² Too	many	files:	pressure	on	the	metadata	servers											
(e.g.	Blue	Waters	300.000	files/min)	

² Too	much	data:	pressure	on	the	data	servers					
(e.g.	several	Terabytes	per	minute)	

100.000+	
cores	

100	I/O	
servers	



Problem	#3:	data	analysis	
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² All	data	are	not	useful	
² How	to	process	data,	adapt	data	layout?	
² When,	where	and	how	to	perform	visualizaNon?	

² From	offline	visualizaCon	to	inline	visualizaCon?	
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Problem	#4:	I/O	ji-er	
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I/O	variability	(or	“ji-er”	)	
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Variability	=	difference	between	write	Cme	
² From	a	process	to	another	
² From	a	write	phase	to	another	
Leads	to	unpredictable	run	Nme!	
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Origins	of	ji#er	
² Network	and	file	system		contenNons	between	processes	

² Internal	interferences	(processes	of	the	same	applicaNon)	
² External	interferences	(cross-applicaNons)	



I/O	variability	(or	“ji-er”	)	
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Variability	=	difference	between	write	Cme	
² From	a	process	to	another	
² From	a	write	phase	to	another	
Leads	to	unpredictable	run	Nme!	

Origins	of	ji#er	
² Network	and	file	system		contenNons	between	processes	

² Internal	interferences	(processes	of	the	same	applicaNon)	
² External	interferences	(cross-applicaNons)	

Understanding	the	ji#er	
² StaNsNcal	analysis	(variance):	intractable	



How	to	interpret	I/O	variability?	
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Process	ID	

Time	(sec)	

Start	wriCng	 Stop	wriCng	

Average	=	X,	Standard	deviaNon	=	Y	…	OK,	and?	



How	to	interpret	I/O	variability?	
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Start	wriCng	 Stop	wriCng	
Process	ID	

Time	(sec)	

Let’s	sort	this	trace	
² White	part	corresponds	to	wasted	>me	



ContribuNon	#1:		
Graphical	comparison	of	traces	
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Data	size	
(per	process)	

Color	scale	for	aggregate	throughput	

Exp	#1	

Exp	#2	

Exp	#3	

Exp	#4	

Exp	#5	



ContribuNon	#1:	Summary	
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² A	methodology	to	visualize	and	interpret	variability	

² Used	on	a	set	of	400	experiments	(230400	mesures)	

² Validity:	from	400	MB/s	to	21	GB/s	on	Grid’5000	
(with	PVFS	and	the	IOR	benchmark)	by	playing	with	3	different	
parameters	



ContribuNon	#1:	Summary	
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² A	methodology	to	visualize	and	interpret	variability	

² Used	on	a	set	of	400	experiments	(230400	mesures)	

² Validity:	from	400	MB/s	to	21	GB/s	on	Grid’5000	
(with	PVFS	and	the	IOR	benchmark)	by	playing	with	3	different	
parameters	

Tuning	a	parallel	file	system	is	hard,					
couldn’t	we	simply	hide	this	variability?	
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Leave	a	core,	go	faster!	

On	mulNcore	SMP	nodes…	



The	Damaris	approach:	
dedicated	I/O	cores	
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Note:	these	behaviors	are	periodic	



The	Damaris	approach:	
dedicated	I/O	cores	
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² Use	the	SMP’s	intra-node	shared	memory	

Note:	these	behaviors	are	periodic	



The	Damaris	approach:	
dedicated	I/O	cores	
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² Overlap	I/O	with	computaNon	

Note:	these	behaviors	are	periodic	



The	Damaris	approach:	
dedicated	I/O	cores	
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² Spare	Nme	in	the	I/O	core	

Note:	these	behaviors	are	periodic	



Damaris:	architecture	overview	
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Within	one	mulCcore	node	
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Within	one	mulCcore	node	



Damaris:	architecture	overview	

34	
Within	one	mulCcore	node	



Damaris:	implementaNon	
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² Wri-en	in	C++	(currently	3400	lines	of	code)	

² Boost	library	for	interprocess	communicaNons	
and	shared	memory	

² Client-side	libraries	for	C,	C++	and	Fortran	

² External	XML	configuraCon	
(e.g.	configuring	buffer	size,	events,	ac>ons)	

² Take	a	look!	h#p://damaris.gforge.inria.fr/	



The	Damaris	approach:	benefits	
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² Hides	I/O-related	costs	by	overlapping	computaNon	and	I/O	
² Fewer	files	thanks	to	data	aggregaNon	
² No	synchronizaNon	compared	to	collecNve	I/O	
² No	more	ji-er	
² Spares	Nme	
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² Hides	I/O-related	costs	by	overlapping	computaNon	and	I/O	
² Fewer	files	thanks	to	data	aggregaNon	
² No	synchronizaNon	compared	to	collecNve	I/O	
² No	more	I/O	ji-er	
² Spares	Nme	

How	to	use	the	spare	Cme?	
	
² Custom	plugin	system:	

² Data	post-processing,		
² Indexing,	analysis	

² End-to-end	scienCfic	process	
² Connect	visualizaNon/analysis	tools		
è	inline	visualizaNon	
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The	CM1	tornado	simulaNon	
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² CM1	=	Georges	Bryan’s	Cloud	model	version	1	
² Three-dimensional,	non-hydrostaNc,	non-linear,	Nme-dependent	numerical	

model	suitable	for	idealized	studies	of	atmospheric	phenomena	

² Currently	writes	using	HDF5:	file-per-process	

² Development	version	allowing	collecCve-I/O	



IntegraNon	with	the	CM1															
tornado	simulaNon	
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² On	Grid’5000:	French	naConal	testbed	(24	cores/node,	672	cores),	with	PVFS,	
comparison	with	collecCve	I/O	
² CommunicaNon	overhead	è	leaving	a	core	is	more	efficient	
² No	synchronizaNon	
² 6	Nmes	higher	write	throughput	
	



IntegraNon	with	the	CM1															
tornado	simulaNon	
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²  BluePrint:	Power5	BlueWaters	interim	system	at	NCSA	(16	cores/node,	1024	
cores),	with	GPFS,	comparison	with	file-per-process	approach	
² On	64	nodes	è	64	files	instead	of	1024	
² More	efficient	data	aggregaNon	

GPFS	



IntegraNon	with	the	CM1	
tornado	simulaNon	
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No	more	I/O	ji#er,								
no	more	I/O	overhead!	

Spares	more	than	
75%	of	Cme	for	data	

processing	



IntegraNon	with	the	CM1															
tornado	simulaNon	
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²  In	both	cases:	

² Spare	Nme	usage	
² Data	layout	adaptaNon	for	subsequent	analysis	
² Overhead-free	compression	(600%)	

² No	more	I/O	ji-er	and	I/O	related	costs	
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Conclusion	
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² Contribution #1 : study and representation of I/O variability 
² Allows simple and fast study of parameters influence 
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² Contribution #1 : study and representation of I/O variability 
² Allows simple and fast study of parameters influence 
 

² Contribution #2 : the Damaris approach 
² Dedicates one core to I/O 
² Hides I/O variability and overhead 
² Achieves better throughput (6x on G5k) 
² Aggregates and compress data (600%) 
² Tested on Grid’5000 and BluePrint 



Outcomes	of	this	work	
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² Poster presented at ICS’11 (June 1-3, Tucson, AZ) 
² 2nd price at the ICS section of the ACM     

Student Research Competition 



Outcomes	of	this	work	
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² Submission to IPDPS 2012 
²  Integrating Damaris in other simulations:  

  Enzo, GTC, CESM, WRF… 
² Testing at larger scales (Kraken) 
² Using Damaris to perform inline visualization 
² … 

Future	work	

² Poster presented at ICS’11 (June 1-3, Tucson, AZ) 
² 2nd price at the ICS section of the ACM     

Student Research Competition 



Thank	you,	quesNons?	
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