
Ma#hieu	Dorier	
ENS	Cachan	Bri-any	extension	

ma#hieu.dorier@eleves.bretagne.ens-cachan.fr	
KerData	Team	

Advised	by	Gabriel	Antoniu	and	Luc	Bougé	

April	14	to	16,	2011	–	Tornado	outbreak	in	USA	–	43	deaths	

2	

Let’s	start	with	pictures	

April	14	to	16,	2011	–	Tornado	outbreak	in	USA	–	43	deaths	

Could	we	have	predicted	this?	
3	

Let’s	start	with	pictures	

Understanding	climate	

4	

² Large-scale	simulaNons	help	
understanding	climate	

² Require	high	performance	

HPC	simulaNons	on	BlueWaters	

5	

Context:	Joint	Laboratory	for	Petascale	
Compu>ng,	targeNng	Blue	Waters	
² More	than	300.000	cores	
² 11	petaflops	(1015	op/sec)	peak	performance	

(h-p://www.ncsa.illinois.edu/BlueWaters/)	

HPC	simulaNons	on	BlueWaters	

6	

Context:	Joint	Laboratory	for	Petascale	
Compu>ng,	targeNng	Blue	Waters	
² More	than	300.000	cores	
² 11	petaflops	peak	performance	

² SimulaCons	generaCng	extremely	large	amounts	of	data	
(terabytes	every	minute)	

How	to	handle		
such	large	amounts	of	data?	

7	

² How	to	efficiently	store	and	move	data?	
² How	to	index,	process,	compress	these	data?	
² How	to	analyze,	visualize	and	understand	them?	

Outline	

1.  I/O	and	data	management	in	HPC	
2.  Understanding	I/O	ji-er	
3.  Damaris:	our	new	approach	to	I/O		
4.  Experimental	evaluaNons	
5.  Conclusion	

8	

Outline	

1.  I/O	and	data	management	in	HPC	
2.  Understanding	I/O	ji-er	
3.  Damaris:	our	new	approach	to	I/O	
4.  Experimental	evaluaNons	
5.  Conclusion	

9	

Standard	I/O	flow	

10	

100.000+	
cores	

PetaBytes	of	
data	 ~	10.000	

cores	

² Periodic	data	generaNon	from	the	simulaNon	
² Storage	in	a	parallel	file	system	
² Offline	analysis	and	visualizaNon	[Childs,2010]	

The	key	component:		
Parallel	File	Systems	

11	

GPFS	

² Deployed	on	a	set	of	dedicated	servers	

² Shared	by	all	users	(e.g.	100	GPFS	servers	on	Blue	Waters)	

² Breaks	files	in	chunks	distributed	across	servers	

[Carns	et	al.,2000]	 [Schmuck	et	al.,2002]	

[Donovan	et	al.,2003]	

Handling	I/O	in	simulaNons:	
Two	main	approaches	

12	

															Independent	I/O																														CollecCve	I/O	
															(file-per-process)	

² Requires	synchronizaNon	
² Hard	to	implement	
² OpNmizes	communicaNons	

² Huge	metadata	overhead	
² Hard	to	read	back	
² Easy	(natural)	to	implement	

Problem	#1:	Unbalanced	load,	
Periodic	bursts	of	I/O	

13	

“Cardiogram”	of	a	data	server	
(network	acNvity	when	running	a	simulaNon)	

Problem	#2:	I/O	bo-leneck	

14	

² Too	many	files:	pressure	on	the	metadata	servers											
(e.g.	Blue	Waters	300.000	files/min)	

² Too	much	data:	pressure	on	the	data	servers					
(e.g.	several	Terabytes	per	minute)	

100.000+	
cores	

100	I/O	
servers	

Problem	#3:	data	analysis	

15	

² All	data	are	not	useful	
² How	to	process	data,	adapt	data	layout?	
² When,	where	and	how	to	perform	visualizaNon?	

² From	offline	visualizaCon	to	inline	visualizaCon?	

16	

Problem	#4:	I/O	ji-er	

Outline	

1.  I/O	and	data	management	in	HPC	
2.  Understanding	I/O	ji-er	
3.  Damaris:	our	new	approach	to	I/O	
4.  Experimental	evaluaNons	
5.  Conclusion	

17	

I/O	variability	(or	“ji-er”)	

18	

Variability	=	difference	between	write	Cme	
² From	a	process	to	another	
² From	a	write	phase	to	another	
Leads	to	unpredictable	run	Nme!	

I/O	variability	(or	“ji-er”)	

19	

Variability	=	difference	between	write	Cme	
² From	a	process	to	another	
² From	a	write	phase	to	another	
Leads	to	unpredictable	run	Nme!	

Origins	of	ji#er	
² Network	and	file	system		contenNons	between	processes	

² Internal	interferences	(processes	of	the	same	applicaNon)	
² External	interferences	(cross-applicaNons)	

I/O	variability	(or	“ji-er”)	

20	

Variability	=	difference	between	write	Cme	
² From	a	process	to	another	
² From	a	write	phase	to	another	
Leads	to	unpredictable	run	Nme!	

Origins	of	ji#er	
² Network	and	file	system		contenNons	between	processes	

² Internal	interferences	(processes	of	the	same	applicaNon)	
² External	interferences	(cross-applicaNons)	

Understanding	the	ji#er	
² StaNsNcal	analysis	(variance):	intractable	

How	to	interpret	I/O	variability?	

21	

Process	ID	

Time	(sec)	

Start	wriCng	 Stop	wriCng	

Average	=	X,	Standard	deviaNon	=	Y	…	OK,	and?	

How	to	interpret	I/O	variability?	

22	

Start	wriCng	 Stop	wriCng	
Process	ID	

Time	(sec)	

Let’s	sort	this	trace	
² White	part	corresponds	to	wasted	>me	

ContribuNon	#1:		
Graphical	comparison	of	traces	

23	

Data	size	
(per	process)	

Color	scale	for	aggregate	throughput	

Exp	#1	

Exp	#2	

Exp	#3	

Exp	#4	

Exp	#5	

ContribuNon	#1:	Summary	

24	

² A	methodology	to	visualize	and	interpret	variability	

² Used	on	a	set	of	400	experiments	(230400	mesures)	

² Validity:	from	400	MB/s	to	21	GB/s	on	Grid’5000	
(with	PVFS	and	the	IOR	benchmark)	by	playing	with	3	different	
parameters	

ContribuNon	#1:	Summary	

25	

² A	methodology	to	visualize	and	interpret	variability	

² Used	on	a	set	of	400	experiments	(230400	mesures)	

² Validity:	from	400	MB/s	to	21	GB/s	on	Grid’5000	
(with	PVFS	and	the	IOR	benchmark)	by	playing	with	3	different	
parameters	

Tuning	a	parallel	file	system	is	hard,					
couldn’t	we	simply	hide	this	variability?	

Outline	

1.  I/O	and	data	management	in	HPC	
2.  Understanding	I/O	ji-er	
3.  Damaris:	our	new	approach	to	I/O		
4.  Experimental	evaluaNons	
5.  Conclusion	

26	

27	

Leave	a	core,	go	faster!	

On	mulNcore	SMP	nodes…	

The	Damaris	approach:	
dedicated	I/O	cores	

28	
Note:	these	behaviors	are	periodic	

The	Damaris	approach:	
dedicated	I/O	cores	

29	

² Use	the	SMP’s	intra-node	shared	memory	

Note:	these	behaviors	are	periodic	

The	Damaris	approach:	
dedicated	I/O	cores	

30	

² Overlap	I/O	with	computaNon	

Note:	these	behaviors	are	periodic	

The	Damaris	approach:	
dedicated	I/O	cores	

31	

² Spare	Nme	in	the	I/O	core	

Note:	these	behaviors	are	periodic	

Damaris:	architecture	overview	

32	
Within	one	mulCcore	node	

Damaris:	architecture	overview	

33	
Within	one	mulCcore	node	

Damaris:	architecture	overview	

34	
Within	one	mulCcore	node	

Damaris:	implementaNon	

35	

² Wri-en	in	C++	(currently	3400	lines	of	code)	

² Boost	library	for	interprocess	communicaNons	
and	shared	memory	

² Client-side	libraries	for	C,	C++	and	Fortran	

² External	XML	configuraCon	
(e.g.	configuring	buffer	size,	events,	ac>ons)	

² Take	a	look!	h#p://damaris.gforge.inria.fr/	

The	Damaris	approach:	benefits	

36	

² Hides	I/O-related	costs	by	overlapping	computaNon	and	I/O	
² Fewer	files	thanks	to	data	aggregaNon	
² No	synchronizaNon	compared	to	collecNve	I/O	
² No	more	ji-er	
² Spares	Nme	

The	Damaris	approach:	benefits	

37	

² Hides	I/O-related	costs	by	overlapping	computaNon	and	I/O	
² Fewer	files	thanks	to	data	aggregaNon	
² No	synchronizaNon	compared	to	collecNve	I/O	
² No	more	ji-er	
² Spares	Nme	

How	to	use	the	spare	Cme?	
	

The	Damaris	approach:	benefits	

38	

² Hides	I/O-related	costs	by	overlapping	computaNon	and	I/O	
² Fewer	files	thanks	to	data	aggregaNon	
² No	synchronizaNon	compared	to	collecNve	I/O	
² No	more	I/O	ji-er	
² Spares	Nme	

How	to	use	the	spare	Cme?	
	
² Custom	plugin	system:	

² Data	post-processing,		
² Indexing,	analysis	

² End-to-end	scienCfic	process	
² Connect	visualizaNon/analysis	tools		
è	inline	visualizaNon	

Outline	

1.  I/O	and	data	management	in	HPC	
2.  Understanding	I/O	ji-er	
3.  Damaris:	our	new	approach	to	I/O		
4.  Experimental	evaluaNons	
5.  Conclusion	

39	

The	CM1	tornado	simulaNon	

40	

² CM1	=	Georges	Bryan’s	Cloud	model	version	1	
² Three-dimensional,	non-hydrostaNc,	non-linear,	Nme-dependent	numerical	

model	suitable	for	idealized	studies	of	atmospheric	phenomena	

² Currently	writes	using	HDF5:	file-per-process	

² Development	version	allowing	collecCve-I/O	

IntegraNon	with	the	CM1															
tornado	simulaNon	

41	

² On	Grid’5000:	French	naConal	testbed	(24	cores/node,	672	cores),	with	PVFS,	
comparison	with	collecCve	I/O	
² CommunicaNon	overhead	è	leaving	a	core	is	more	efficient	
² No	synchronizaNon	
² 6	Nmes	higher	write	throughput	
	

IntegraNon	with	the	CM1															
tornado	simulaNon	

42	

²  BluePrint:	Power5	BlueWaters	interim	system	at	NCSA	(16	cores/node,	1024	
cores),	with	GPFS,	comparison	with	file-per-process	approach	
² On	64	nodes	è	64	files	instead	of	1024	
² More	efficient	data	aggregaNon	

GPFS	

IntegraNon	with	the	CM1	
tornado	simulaNon	

43	

No	more	I/O	ji#er,								
no	more	I/O	overhead!	

Spares	more	than	
75%	of	Cme	for	data	

processing	

IntegraNon	with	the	CM1															
tornado	simulaNon	

44	

²  In	both	cases:	

² Spare	Nme	usage	
² Data	layout	adaptaNon	for	subsequent	analysis	
² Overhead-free	compression	(600%)	

² No	more	I/O	ji-er	and	I/O	related	costs	

Outline	

1.  I/O	and	data	management	in	HPC	
2.  Understanding	I/O	ji-er	
3.  Damaris:	our	new	approach	to	I/O		
4.  Experimental	evaluaNons	
5.  Conclusion	

45	

Conclusion	

46	

² Contribution #1 : study and representation of I/O variability
² Allows simple and fast study of parameters influence

Conclusion	

47	

² Contribution #1 : study and representation of I/O variability
² Allows simple and fast study of parameters influence

² Contribution #2 : the Damaris approach
² Dedicates one core to I/O
² Hides I/O variability and overhead
² Achieves better throughput (6x on G5k)
² Aggregates and compress data (600%)
² Tested on Grid’5000 and BluePrint

Outcomes	of	this	work	

48	

² Poster presented at ICS’11 (June 1-3, Tucson, AZ)
² 2nd price at the ICS section of the ACM

Student Research Competition

Outcomes	of	this	work	

49	

² Submission to IPDPS 2012
²  Integrating Damaris in other simulations:

 Enzo, GTC, CESM, WRF…
² Testing at larger scales (Kraken)
² Using Damaris to perform inline visualization
² …

Future	work	

² Poster presented at ICS’11 (June 1-3, Tucson, AZ)
² 2nd price at the ICS section of the ACM

Student Research Competition

Thank	you,	quesNons?	

50	

People	involved	in	this	work:	

Dave	
Semeraro	
NCSA,	UIUC	

Franck	
Cappello	

INRIA	Saclay	

Gabriel	
Antoniu	

INRIA	Rennes	

Leigh	
Orf	

CMICH	
	

Marc	
Snir	

NCSA,	UIUC	
Ma#hieu	
Dorier	

ENS	Cachan	

Robert	
Wilhelmson	
NCSA,	UIUC	

This work is conducted in the context of
the Joint INRIA/UIUC Laboratory for Petascale Computing

