

Data Scheduling in NEXTGenIO

Toni Cortes, Ramon Nou*, Alberto Miranda

Team overview

- Two main topics
 - HPC Storage
 - Toni Cortes, Ramon Nou and Alberto Miranda
 - Data-aware scheduling
 - Ephemeral filesystems (per job / per application)
 - Data Sharing dataClay team
 - Toni Cortes, Anna Queralt and Jonathan Marti
 - Object Store with execution capabilities.

EU Projects

- NEXTGenIO (M36 of M48)
 - NVDIMM based hardware
 - Working on:
 - data scheduling
 - echofs (ephemeral local filesystem)
 - gekkofs (ephemeral distributed filesystem collaboration with André Brinkmann)
- BigStorage (MCITN) and Expertise (MCITN)
- Class (Internet Of Things)
- Elastic (Fog Computing) and mF2C (Fog Computing)

SLURM (Workflow Support) | CCC

- Workflows enhancements (1-to-1, do we need N-to-N)?
 - New options for srun/sbatch/salloc (--workflow-start, --workflow-end, workflow-parent=JOB ID);
 - New options for sstat tools (--workflows);
 - New internal data structures;
 - New priority plugin;
 - New scheduling plugin/algorithm;
 - Parent/child relationships between jobs in the same workflow;
 - Priority of workflow jobs is updated during Scheduling runs;
 - Child workflow jobs are held and will not run before their parent has completed running.

SLURM (Same node Scheduling)

- Same node scheduling
 - Can be requested by the user (using a new option);
 - Can be initiated by the Scheduler;
 - New options for srun/sbatch/salloc (--request-same-node);
 - Updated Job and Node scheduling algorithm.

Logic:

- Increasing number of nodes: Reuse the existing ones and add more nodes;
- Same number of nodes: Reuse the same nodes;
- Decreasing number of nodes: Use some (the best) of the existing nodes.

SLURM (Storage based Scheduling) CCC

Storage based scheduling

- Users can specify storage requirements of their job and the Scheduler will only use nodes that satisfy their specs;
- New options for srun/sbatch/salloc (--storage-type (IN/OUT), --storage-size=,-storage-location=);
- Updated Job and Nodes data structures;
- Updated Job and Node scheduling algorithm.

- data scheduling (norns)
 - Coordinate data-movements that may have an impact on the system
 - Node -> PFS || PFS -> Node || Node -> Node
 - Using SLURM and user library as interface
 - Using PFS / system information
 - How many I/O is happening in the system?
 - Will the performance decrease if we add more I/O?
 - Able to register different backends and issue async transfer requests.
 - i.e. [tmp0://POSIX, 2GiB] [pmem0://, PMDK, 500 GiB]
 - "User" can provide "stream" and "stream iterators"
- BSC Supercomputing 1 control daemon per node

- DS Coordination effect
 - Reading writing 3x16GB files
 - Directly (at once)
 - With stage-in stage-out (at once)
 - Coordinated in-out
 - Eventually will look for PFS status and decide if we can issue a transfer or not.

- echofs [1.0 released]
 - Ephemeral file system per app using local storage
 - Local FUSE based (99% POSIX compatibility)
 - Reduce POSIX features not used to increase performance
 - Stage-in / Stage-out support (also with norns)
 - Working on NVDIMM
 - Metadata in memory => Removes PFS Overhead
 - Issues: FUSE Overhead, but still some scenarios are promising (and this is an app oriented filesystem).

echofs [metadata performance]

echofs [data performance]

- gekkofs [JGU André Brinkmann's team]
 - Ephemeral distributed file system per app using local storage
 - LDPRELOAD based (low POSIX compatibility)
 - Using pmem syscall_intercept library
 - Adding system calls to increase compatibility
 - Adding NVDIMM backend
 - Metadata and data performance increases by the number of nodes provided.
 - Issues: LDPRELOAD, apps, forks, links becomes hard to solve.

Ideas...etc

- FUSE optimization
 - Create the next FUSE-like framework usable on faster devices
- Applications
 - Lots of solutions, but small number of applications
 - Trying OpenFOAM, moving to CASTEP.
- Pattern recognition in I/O
 - Recognition and prediction solved.
 - Need to find places to tune I/O. Working with INRIA Grenoble (JLESC)
 - Open to ideas
 - Our team has experience in different layers and topics

