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IO congestion in HPC systems:

» HPC applications are generating lots of
data for PFS.

» Idea is to use a buffer when the I/O
bandwidth is fully occupied

» The buffer can be emptied at a later
time.

[MOTIVATION]

STORAGE BANDWIDTH ULTILZATION OF A
MAJOR HPC PRODUCTION STORAGE SYSTEM
+ 99% of the time < 33% of max
+ 70% of the time < 5% of max
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“BUFFERS ARE THE ANSWER TO EVERYTHING!”

— DDN salesperson
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“BUFFERS ARE THE ANSWER TO EVERYTHING!”

— DDN salesperson (maybe)
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Overall, for various parameter we obtain something

that looks like this:

Proportion of Waste

Size of Buffer

3

[FINDING THE RIGHT SIZE]

Naive strategy:

» If IO bandwidth avail.:
— use it
» Else;
— fill the burst buffers
» When IO bandwidth is avail.

and buffers are full enough:
— empty the burst-buffers.
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[PREVIOUSLY IN 1O SCHEDULING.]

“Online” scheduling;:
» When an application is ready to do I/O, it sends a message to an I/O scheduler;

» Based on the other applications running and a priority function, the I/O scheduler
will give a GO or NOGO to the application.

» If the application receives a NOGO, it pauses until a GO instruction.
» Else, it performs I/O.

Gainaru, A., Benoit, Cappello, Robert, Snir,
Scheduling HPC applications under I/0 congestion, IPDPS’15
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[PREVIOUSLY IN 1O SCHEDULING.]
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[PREVIOUSLY IN 1O SCHEDULING.]
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[PREVIOUSLY IN 1O SCHEDULING.]
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[PREVIOUSLY IN 10 SCHEDULING.]
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Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.
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[CAN WE DO BETTER‘?]

Assume we know applications I/O patterns:
» from historical data;
» because of periodic checkpointing;

» average filling speed of buffers
—> we know that every x min, y% of the buffer needs to be emptied;

> ..
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[CAN WE DO BETTER‘?]

Assume we know applications I/O patterns:
» from historical data;
» because of periodic checkpointing;

» average filling speed of buffers
—> we know that every x min, y% of the buffer needs to be emptied;

> ..

Can we use this information and enforce efficient static schedules?

Spoiler: it works very well (at least it seems promising)
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[HIGH—LEVEL CONSTRAINTS]

» Applications are already scheduled on the machines:
not (yet) our job to do it;

A., Gainaru, Le Févre, Periodic I/0 scheduling for super-computers, PMBS’17
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Applications are already scheduled on the machines:
not (yet) our job to do it;

We want the schedule information distributed over the applis:

the goal is not to add a new congestion point;

Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ©.

We introduce Periodic Scheduling.

A., Gainaru, Le Févre, Periodic I/0 scheduling for super-computers, PMBS’17

3 ° ° ° o o

Do



PERIODIC SCHEDULES
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[PERIODIC SCHEDULES]

Time Schedule vs what Application 4 sees
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Time Schedule vs what Application 4 sees

[PERIODIC SCHEDULES]
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Setup:
» Applications from the literature, 10 sets with
different contention.

» Comparison between simulations and a real
machine (Jupiter @Mellanox: 640 cores,
b=0.01GB/s, B=3GB/s).

» Instations with IOR benchmark (ideal world, no
other communication than I/O transfers).

[MODEL VALIDATION]

Algos:
» Periodic: our periodic algorithm;

» Online: the best performance of any online
algorithm in Gainaru et al. IPDPS’15;

» Congestion: Current performance on the
machine.

A., Gainaru, Le Févre, Periodic I/0 scheduling for super-computers, PMBS’17
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[RESULTS (EXPES)
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The performance estimated by our model is accurate within 3.8% for periodic schedules
and 2.3% for online schedules.
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[MORE RESULTS (SIMULATIONS)
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[THE DASH PROJECT]

Understanding applications patterns

Study of robustness: what if w; and VOlikO are not exactly what they were supposed to
be?

Integrating non-periodic application
Burst-buffers integration/modeling
Coupling application scheduler to 10 scheduler

Evaluation on real applications



Three steps

1. I/O Modeling
2. Algorithm design

3. Evaluation and
Integration

[COLLABORATIONS NEEDED: ]

Application/system users:

» Data about I/O behaviors: patterns/periodicity,
volume etc.

» Discussion about models of I/0O scalability
From large-scale IO managers:

» Understanding traces, what kind of properties
can we assume on the system?

» Discussion on implementation / integration

» Experiments
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DATA-AWARE SCHEDULING AT HIGHER SCALE

Nicolas Vidal is starting his PhD this
October. Talk to him ©.

Thanks to collab. and co-authors

JT Acquaviva (DDN), O Beaumont (Inria), L
Eyraud-Dubois (Inria), E Jeannot (Inria), A Gainaru
(Vanderbilt), V Le Fevre (ENS Lyon), N Vidal (Inria)

Papers, data, code: https://project.inria.fr/dash/
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