
I/O Scheduling in HPC systems

Guillaume Aupy

Project page: https://project.inria.fr/dash/

Collab. with JT Acquaviva (DDN), O Beaumont (Inria), L Eyraud-Dubois (Inria), E Jeannot (Inria), A

Gainaru (Vanderbilt), V Le Fèvre (ENS Lyon), N Vidal (Inria)

https://project.inria.fr/dash/


1

Motivation

IO congestion in HPC systems:

I HPC applications are generating lots of
data for PFS.

I Idea is to use a buffer when the I/O
bandwidth is fully occupied

I The buffer can be emptied at a later
time.

Figure: Burst-buffers to absorb IO peaks (DDN

material)

“BUFFERS ARE THE ANSWER TO EVERYTHING!”
– DDN salesperson (maybe)



1

Motivation

IO congestion in HPC systems:

I HPC applications are generating lots of
data for PFS.

I Idea is to use a buffer when the I/O
bandwidth is fully occupied

I The buffer can be emptied at a later
time.

Figure: Burst-buffers to absorb IO peaks (DDN

material)

“BUFFERS ARE THE ANSWER TO EVERYTHING!”
– DDN salesperson

(maybe)



1

Motivation

IO congestion in HPC systems:

I HPC applications are generating lots of
data for PFS.

I Idea is to use a buffer when the I/O
bandwidth is fully occupied

I The buffer can be emptied at a later
time.

Figure: Burst-buffers to absorb IO peaks (DDN

material)

“BUFFERS ARE THE ANSWER TO EVERYTHING!”
– DDN salesperson (maybe)



2

Finding the right size

Overall, for various parameter we obtain something
that looks like this:

Size of Buffer

P
ro

p
o
rt

io
n

o
f

W
a
st

e

Waste due to
Average IO
occupation

Naive strategy:

I If IO bandwidth avail.:
→ use it

I Else;
→ fill the burst buffers

I When IO bandwidth is avail.
and buffers are full enough:
→ empty the burst-buffers.

How can we further reduce S
for a given waste?



2

Finding the right size

Overall, for various parameter we obtain something
that looks like this:

Size of Buffer

P
ro

p
o
rt

io
n

o
f

W
a
st

e

Waste due to
Average IO
occupation

Naive strategy:

I If IO bandwidth avail.:
→ use it

I Else;
→ fill the burst buffers

I When IO bandwidth is avail.
and buffers are full enough:
→ empty the burst-buffers.

How can we further reduce S
for a given waste?



2

Finding the right size

Overall, for various parameter we obtain something
that looks like this:

Size of Buffer

P
ro

p
o
rt

io
n

o
f

W
a
st

e

Waste due to
Average IO
occupation

I/O scheduling!

Naive strategy:

I If IO bandwidth avail.:
→ use it

I Else;
→ fill the burst buffers

I When IO bandwidth is avail.
and buffers are full enough:
→ empty the burst-buffers.

How can we further reduce S
for a given waste?



3

Previously in IO scheduling.

“Online” scheduling:

I When an application is ready to do I/O, it sends a message to an I/O scheduler;

I Based on the other applications running and a priority function, the I/O scheduler
will give a GO or NOGO to the application.

I If the application receives a NOGO, it pauses until a GO instruction.

I Else, it performs I/O.

Gainaru, A., Benoit, Cappello, Robert, Snir,

Scheduling HPC applications under I/O congestion, IPDPS’15



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



3

Previously in IO scheduling.

App1

App2

App3

w(1)

w(2)
w(3)

w(1)

w(3)

w(2)

w(1)

w(2)
w(3)

bw

Time0
0

B

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.



4

Can we do better?

Assume we know applications I/O patterns:

I from historical data;

I because of periodic checkpointing;

I average filling speed of buffers
=⇒ we know that every x min, y% of the buffer needs to be emptied;

I ..

Can we use this information and enforce efficient static schedules?

Spoiler: it works very well (at least it seems promising)



4

Can we do better?

Assume we know applications I/O patterns:

I from historical data;

I because of periodic checkpointing;

I average filling speed of buffers
=⇒ we know that every x min, y% of the buffer needs to be emptied;

I ..

Can we use this information and enforce efficient static schedules?

Spoiler: it works very well (at least it seems promising)



5

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.

A., Gainaru, Le Fèvre, Periodic I/O scheduling for super-computers, PMBS’17



5

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.

A., Gainaru, Le Fèvre, Periodic I/O scheduling for super-computers, PMBS’17



5

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.

A., Gainaru, Le Fèvre, Periodic I/O scheduling for super-computers, PMBS’17



5

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.

A., Gainaru, Le Fèvre, Periodic I/O scheduling for super-computers, PMBS’17



5

High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.

A., Gainaru, Le Fèvre, Periodic I/O scheduling for super-computers, PMBS’17



6

Periodic schedules

Bw

Time

Init

· · ·

Pattern Clean up

c T+c 2T+c 3T+c (n−2)T+c (n−1)T+c nT+c

(a) Periodic schedule (phases)

Bw

Time0

0

T

B

volio1 volio1 volio1

volio2 volio2 volio2
volio3 volio3volio4

initW
(4)
1endW

(4)
1 initIO

(4)
1

(b) Detail of I/O in a period/pattern



6

Periodic schedules

Time Schedule vs what Application 4 sees
Bw

0

B

Timec T+c

volio1 volio1 volio1

volio2 volio2 volio2
volio3 volio3volio4

initW
(4)
1endW

(4)
1 initIO

(4)
1

Compute Idle IO + bw Idle

IO
+
bw

Compute

I Distributed information

I Low complexity

I Minimum overhead



6

Periodic schedules

Time Schedule vs what Application 4 sees

Bw

0

B

Timec T+c

volio1 volio1 volio1

volio2 volio2 volio2
volio3 volio3volio4

initW
(4)
1endW

(4)
1 initIO

(4)
1

Compute Idle IO + bw Idle

IO
+
bw

Compute

I Distributed information

I Low complexity

I Minimum overhead



7

Model validation

Setup:

I Applications from the literature, 10 sets with
different contention.

I Comparison between simulations and a real
machine (Jupiter @Mellanox: 640 cores,
b = 0.01GB/s, B = 3GB/s).

I Instations with IOR benchmark (ideal world, no
other communication than I/O transfers).

Algos:

I Periodic: our periodic algorithm;

I Online: the best performance of any online
algorithm in Gainaru et al. IPDPS’15;

I Congestion: Current performance on the
machine.

A., Gainaru, Le Fèvre, Periodic I/O scheduling for super-computers, PMBS’17



8

Results (expes)

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10
Set

Sy
st

em
 E

ffi
ci

en
cy

 / 
U

pp
er

 b
ou

nd

Periodic (expe)

Periodic (simu)

Online (expe)

Online (simu)

Congestion

(c) SysEfficiency/Upper bound

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10
Set

D
ila

tio
n

Periodic (expe)

Periodic (simu)

Online (expe)

Online (simu)

Congestion

(d) Dilation

The performance estimated by our model is accurate within 3.8% for periodic schedules
and 2.3% for online schedules.



9

More results (simulations)

I We generate more sets
of applications

I Simulate on
instanciations of
Intrepid and Mira.

0.6

0.8

1.0

0 25 50 75 100
Set

Sy
st

em
 E

ffi
ci

en
cy

 / 
U

pp
er

 b
ou

nd

Periodic
Online (best) 0.4

0.6

0.8

1.0

0 25 50 75 100
Set

Sy
st

em
 E

ffi
ci

en
cy

 / 
U

pp
er

 b
ou

nd

Periodic
Online (best)

1.0

1.2

1.4

1.6

0 25 50 75 100
Set

D
ila

tio
n

Periodic
Online (best)

1

2

3

0 25 50 75 100
Set

D
ila

tio
n

Periodic
Online (best)

Intrepid Mira



10

The DASH project

I Understanding applications patterns

I Study of robustness: what if wk and voliok are not exactly what they were supposed to
be?

I Integrating non-periodic application

I Burst-buffers integration/modeling

I Coupling application scheduler to IO scheduler

I Evaluation on real applications



11

Collaborations needed:

Three steps

1. I/O Modeling

2. Algorithm design

3. Evaluation and
Integration

Application/system users:

I Data about I/O behaviors: patterns/periodicity,
volume etc.

I Discussion about models of I/O scalability

From large-scale IO managers:

I Understanding traces, what kind of properties
can we assume on the system?

I Discussion on implementation / integration

I Experiments



Dash
Data-Aware Scheduling at Higher scale

Compute Nodes

Burst Buffers

(Distributed)

ION

ION

BBsBBs

(Shared)

IO Bandwidth PFS

Nicolas Vidal is starting his PhD this
October. Talk to him ,.

Thanks to collab. and co-authors
JT Acquaviva (DDN), O Beaumont (Inria), L
Eyraud-Dubois (Inria), E Jeannot (Inria), A Gainaru
(Vanderbilt), V Le Fèvre (ENS Lyon), N Vidal (Inria)

Papers, data, code: https://project.inria.fr/dash/

https://project.inria.fr/dash/

	Introduction
	Simulations and experiments
	Conclusion

