[/O SCHEDULING IN HPC SYSTEMS
Guillaume Aupy

V4

infermatics #¥ mathematics U n.] VerSité
VA0 77, 2 “BORDEAUX

Project page: https://project.inria.fr/dash/
Collab. with JT Acquaviva (DDN), O Beaumont (Inria), L Eyraud-Dubois (Inria), E Jeannot (Inria), A
Gainaru (Vanderbilt), V Le Fevre (ENS Lyon), N Vidal (Inria)

https://project.inria.fr/dash/

IO congestion in HPC systems:

» HPC applications are generating lots of
data for PFS.

» Idea is to use a buffer when the I/O
bandwidth is fully occupied

» The buffer can be emptied at a later
time.

[MOTIVATION]

STORAGE BANDWIDTH ULTILZATION OF A
MAJOR HPC PRODUCTION STORAGE SYSTEM
+ 99% of the time < 33% of max
+ 70% of the time < 5% of max

o

BURST
BANDWIDTH
BURST

CAPACITY

IME BURST BUFFER
ABSORBS PEAK LOAD

PARALLEL
FILESYSTEM
HANDLES

SUSTAINED LOAD

SYSTEM I/O RATE

TIME

Figure: Burst-buffers to absorb IO peaks (DDN

material)

(=75

IO congestion in HPC systems:

» HPC applications are generating lots of
data for PFS.

» Idea is to use a buffer when the I/O
bandwidth is fully occupied

» The buffer can be emptied at a later
time.

[MOTIVATION]

STORAGE BANDWIDTH ULTILZATION OF A
MAJOR HPC PRODUCTION STORAGE SYSTEM
+ 99% of the time < 33% of max
+ 70% of the time < 5% of max

o

BURST
BANDWIDTH
BURST

CAPACITY

IME BURST BUFFER
ABSORBS PEAK LOAD

PARALLEL
FILESYSTEM
HANDLES

SUSTAINED LOAD

SYSTEM I/O RATE

TIME

Figure: Burst-buffers to absorb IO peaks (DDN

material)

“BUFFERS ARE THE ANSWER TO EVERYTHING!”

— DDN salesperson

(=75

IO congestion in HPC systems:

» HPC applications are generating lots of
data for PFS.

» Idea is to use a buffer when the I/O
bandwidth is fully occupied

» The buffer can be emptied at a later
time.

[MOTIVATION]

STORAGE BANDWIDTH ULTILZATION OF A
MAJOR HPC PRODUCTION STORAGE SYSTEM
+ 99% of the time < 33% of max
+ 70% of the time < 5% of max

o

BURST
BANDWIDTH
BURST

CAPACITY

IME BURST BUFFER
ABSORBS PEAK LOAD

PARALLEL
FILESYSTEM
HANDLES

SUSTAINED LOAD

SYSTEM I/O RATE

TIME

Figure: Burst-buffers to absorb IO peaks (DDN

material)

“BUFFERS ARE THE ANSWER TO EVERYTHING!”

— DDN salesperson (maybe)

(=75

Overall, for various parameter we obtain something

that looks like this:

Proportion of Waste

Size of Buffer

3

[FINDING THE RIGHT SIZE]

Naive strategy:

» If IO bandwidth avail.:
— use it
» Else;
— fill the burst buffers
» When IO bandwidth is avail.

and buffers are full enough:
— empty the burst-buffers.

(=18

[FINDING THE RIGHT SIZE)

Overall, for various parameter we obtain something
that looks like this: Naive strategy:

» If IO bandwidth avail.:
— use it

» Else;
\ — fill the burst buffers

» When IO bandwidth is avail.
and buffers are full enough:
— empty the burst-buffers.

Proportion of Waste

.......... . — How can we further reduce S
for a given waste?

Size of Buffer

3 ° ° ° ° o ° ° o

(=18

Overall, for various parameter we obtain something
that looks like this:

Proportion of Waste

Size of Buffer

3

[FINDING THE RIGHT SIZE]

Naive strategy:

» If IO bandwidth avail.:
— use it
» Else;
— fill the burst buffers
» When IO bandwidth is avail.

and buffers are full enough:
— empty the burst-buffers.

How can we further reduce S
for a given waste?

(=18

[PREVIOUSLY IN 1O SCHEDULING.]

“Online” scheduling;:
» When an application is ready to do I/O, it sends a message to an I/O scheduler;

» Based on the other applications running and a priority function, the I/O scheduler
will give a GO or NOGO to the application.

» If the application receives a NOGO, it pauses until a GO instruction.
» Else, it performs I/O.

Gainaru, A., Benoit, Cappello, Robert, Snir,
Scheduling HPC applications under I/0 congestion, IPDPS’15

D«

[PREVIOUSLY IN 1O SCHEDULING.]

L4
0 Time

D«

[PREVIOUSLY IN 1O SCHEDULING.]

Apps MO
Appy [n™@]

App, w®

|
bév'ﬁ:
|

(4
Time

D«

[PREVIOUSLY IN 1O SCHEDULING.]

App3 0 (3) I

App, 21, (2)
App, w®

bw 4

_ — - —

L4
0 Time

D«

Apps
App,

App,

bw 4

W) 3 |

202)

[PREVIOUSLY IN 1O SCHEDULING.]

(1)

_ — - —

(4
Time

D«

Apps
App,

App,

bw 4

W) 3 | |

202)

[PREVIOUSLY IN 1O SCHEDULING.]

_ — - —

(4
Time

D«

Apps
App,

App,

bw 4

[PREVIOUSLY IN 1O SCHEDULING.]

(4
Time

D«

[PREVIOUSLY IN 1O SCHEDULING.]

Apps 0 (3) l : :
Apr 7”(2) [
T
App, w(l). | | | w® |
| T
| o
by L
| |
|
0 >
0 Time

[PREVIOUSLY IN 1O SCHEDULING.]

Apps ’IHKSE l : : :
App, 21, (2) o
T T
App, w® | [w®]
| R
| R
bév'ﬁ L I
| |
|
0 : >
0 Time

D«

[PREVIOUSLY IN 1O SCHEDULING.]

Apps wB) : : | w) |
App, 21, (2) o
T T
App, w(U. | | | | u 1) |
] I
| [
bév'ﬁ L I
| |
|
0 >
0 Time

D«

[PREVIOUSLY IN 1O SCHEDULING.]

App; wB) : : L w3) |
App2 ,]”(2) [q”(z) |
T T ;
App, w®) | | L |
| RN
| Y
bg'7 L I
| | |
|
0 >
0 Time

D«

[PREVIOUSLY IN 10 SCHEDULING.]

Apps w®) | : : | wB) |: L)] : ::':
App, 21, (2) o 1, 2) | 1 [, o [
T T AN T i
Appl 711(1>| | | | ||U’() (R ’Uf(l)l | 1
| RN [o T
| Y | RN L
bév'ﬁ L L1
| | |

Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.

D«

[CAN WE DO BETTER‘?]

Assume we know applications I/O patterns:
» from historical data;
» because of periodic checkpointing;

» average filling speed of buffers
—> we know that every x min, y% of the buffer needs to be emptied;

> ..

(=7

[CAN WE DO BETTER‘?]

Assume we know applications I/O patterns:
» from historical data;
» because of periodic checkpointing;

» average filling speed of buffers
—> we know that every x min, y% of the buffer needs to be emptied;

> ..

Can we use this information and enforce efficient static schedules?

Spoiler: it works very well (at least it seems promising)

(=7

[HIGH—LEVEL CONSTRAINTS]

» Applications are already scheduled on the machines:
not (yet) our job to do it;

A., Gainaru, Le Févre, Periodic I/0 scheduling for super-computers, PMBS’17

I o o o ° o

Do

[HIGH—LEVEL CONSTRAINTS]

» Applications are already scheduled on the machines:
not (yet) our job to do it;

» We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

A., Gainaru, Le Févre, Periodic I/0 scheduling for super-computers, PMBS’17

3 ° ° ° o o

Do

[HIGH—LEVEL CONSTRAINTS]

» Applications are already scheduled on the machines:
not (yet) our job to do it;

» We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

» Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

A., Gainaru, Le Févre, Periodic I/0 scheduling for super-computers, PMBS’17

3 ° ° ° o o

Do

[HIGH—LEVEL CONSTRAINTS]

Applications are already scheduled on the machines:
not (yet) our job to do it;

We want the schedule information distributed over the applis:

the goal is not to add a new congestion point;

Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ©.

A., Gainaru, Le Févre, Periodic I/0 scheduling for super-computers, PMBS’17

3 ° ° ° o o

Do

[HIGH—LEVEL CONSTRAINTS]

Applications are already scheduled on the machines:
not (yet) our job to do it;

We want the schedule information distributed over the applis:

the goal is not to add a new congestion point;

Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ©.

We introduce Periodic Scheduling.

A., Gainaru, Le Févre, Periodic I/0 scheduling for super-computers, PMBS’17

3 ° ° ° o o

Do

PERIODIC SCHEDULES

7777777777777Y¥77777777777774777 7 77 77 7777777777777 777777777777777
I e s R A s
A o A A ey
I A A A
I e ey e R I
A A s A A 77
R e R e
A ey 127777 2777 A A ey
7777777777778 77 7 777777 77 R e

AN
Ld
c T+c 2T+c 3T+c (n—2)T+c (n—1)T+c nT+c Time

_— ——
Init Pattern Clean up

) Periodic schedule (phases)

endw'® init1o(? initw{®

(b) Detail of I/O in a period/pattern

3 ° ° o o °

Do

[PERIODIC SCHEDULES]

Time Schedule vs what Application 4 sees

Bw

B

0 3 ,
¢ enaw{® initro{® initw(" T+4c Time

» Distributed information
» Low complexity

» Minimum overhead

Do

Time Schedule vs what Application 4 sees

[PERIODIC SCHEDULES]

1] | 1 | 1

| ; n : o! !

' Compute ; Idle 2 IO + bw : Idle =+: Compute :

| I L™ :
oo] ' ,,,,, l ______ T s R

¢ enaw{® initro{® initw(" Te Time

» Distributed information v~
» Low complexity v

» Minimum overhead v~

Do

Setup:
» Applications from the literature, 10 sets with
different contention.

» Comparison between simulations and a real
machine (Jupiter @Mellanox: 640 cores,
b=0.01GB/s, B=3GB/s).

» Instations with IOR benchmark (ideal world, no
other communication than I/O transfers).

[MODEL VALIDATION]

Algos:
» Periodic: our periodic algorithm;

» Online: the best performance of any online
algorithm in Gainaru et al. IPDPS’15;

» Congestion: Current performance on the
machine.

A., Gainaru, Le Févre, Periodic I/0 scheduling for super-computers, PMBS’17

(=38

[RESULTS (EXPES)

A Periodic (expe)
- peridic (simu)

@ Online (expe)
4l Online (simu)
e £ cogeston
8 os-
g
s <
2]
3 S 20
H g
g
B o
E
5
@ A Periodic (expe) 15-
- Periodic (smy)
@ Online (expe)
04- 4 Online (simu)
£ Congestion 10+ : - - —a
i H E i 5 6 7 5 $ 1o i H] i 5 6 7 8 $ 1o
Set Set
(¢) SysEFFICIENCY/Upper bound (d) DILATION

The performance estimated by our model is accurate within 3.8% for periodic schedules
and 2.3% for online schedules.

Dx

[MORE RESULTS (SIMULATIONS)

210 210
H H
b5} b}
g 2.,
S on ch)
§ g 06 \
» We generate more sets B oo i A
. . 5 o 5)
of applications 2 Rl 2od] | St
[) 25 50 75 100 0 25 50 75 100
Set Set
16- R
~ Periodic | + Periodic
. - Online (best) ~ Online (best)
» Simulate on - 2
instanciations of g ' §
Intrepid and Mira. SRES 8,
1.0- 1
0 25 50 75 100 0 25 50 75 100
Set Set

Intrepid Mira

Do

[THE DASH PROJECT]

Understanding applications patterns

Study of robustness: what if w; and VOlikO are not exactly what they were supposed to
be?

Integrating non-periodic application
Burst-buffers integration/modeling
Coupling application scheduler to 10 scheduler

Evaluation on real applications

Three steps

1. I/O Modeling
2. Algorithm design

3. Evaluation and
Integration

[COLLABORATIONS NEEDED:]

Application/system users:

» Data about I/O behaviors: patterns/periodicity,
volume etc.

» Discussion about models of I/0O scalability
From large-scale IO managers:

» Understanding traces, what kind of properties
can we assume on the system?

» Discussion on implementation / integration

» Experiments

v77 F771 777 F771 [77
R R AR
AR Y Y R S R VA
) B /f/ﬂ
. COMPUTE NODES /7
v £771 777 b7 77
Ry R AR
YRR R R
RN R R

BET

|
[}

BURST BUFFERS

(DISTRIBUTED) (SHARED)

10 BANDWIDTH

PFS

DASH

DATA-AWARE SCHEDULING AT HIGHER SCALE

Nicolas Vidal is starting his PhD this
October. Talk to him ©.

Thanks to collab. and co-authors

JT Acquaviva (DDN), O Beaumont (Inria), L
Eyraud-Dubois (Inria), E Jeannot (Inria), A Gainaru
(Vanderbilt), V Le Fevre (ENS Lyon), N Vidal (Inria)

Papers, data, code: https://project.inria.fr/dash/

https://project.inria.fr/dash/

	Introduction
	Simulations and experiments
	Conclusion

