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Motivation

IO congestion in HPC systems:

I HPC applications are generating lots of
data for PFS.

I Idea is to use a buffer when the I/O
bandwidth is fully occupied

I The buffer can be emptied at a later
time.

Figure: Burst-buffers to absorb IO peaks (DDN

material)

“BUFFERS ARE THE ANSWER TO EVERYTHING!”
– DDN salesperson (maybe)
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Finding the right size

Overall, for various parameter we obtain something
that looks like this:
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Naive strategy:

I If IO bandwidth avail.:
→ use it

I Else;
→ fill the burst buffers

I When IO bandwidth is avail.
and buffers are full enough:
→ empty the burst-buffers.

How can we further reduce S
for a given waste?
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Previously in IO scheduling.

“Online” scheduling:

I When an application is ready to do I/O, it sends a message to an I/O scheduler;

I Based on the other applications running and a priority function, the I/O scheduler
will give a GO or NOGO to the application.

I If the application receives a NOGO, it pauses until a GO instruction.

I Else, it performs I/O.

Gainaru, A., Benoit, Cappello, Robert, Snir,

Scheduling HPC applications under I/O congestion, IPDPS’15
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Previously in IO scheduling.
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Approx 10% improvement in application performance with 5% gain in system performance
on Intrepid.
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Can we do better?

Assume we know applications I/O patterns:

I from historical data;

I because of periodic checkpointing;

I average filling speed of buffers
=⇒ we know that every x min, y% of the buffer needs to be emptied;

I ..

Can we use this information and enforce efficient static schedules?

Spoiler: it works very well (at least it seems promising)
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High-level constraints

I Applications are already scheduled on the machines:
not (yet) our job to do it;

I We want the schedule information distributed over the applis:
the goal is not to add a new congestion point;

I Computing a full I/O schedule over all iterations of all applications would be too
expensive (i) in time, (ii) in space.

I We want a minimum overhead for Applis users:
otherwise, our guess is, users might not like it that much ,.

We introduce Periodic Scheduling.

A., Gainaru, Le Fèvre, Periodic I/O scheduling for super-computers, PMBS’17
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A., Gainaru, Le Fèvre, Periodic I/O scheduling for super-computers, PMBS’17



6

Periodic schedules
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Periodic schedules

Time Schedule vs what Application 4 sees
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Model validation

Setup:

I Applications from the literature, 10 sets with
different contention.

I Comparison between simulations and a real
machine (Jupiter @Mellanox: 640 cores,
b = 0.01GB/s, B = 3GB/s).

I Instations with IOR benchmark (ideal world, no
other communication than I/O transfers).

Algos:

I Periodic: our periodic algorithm;

I Online: the best performance of any online
algorithm in Gainaru et al. IPDPS’15;

I Congestion: Current performance on the
machine.

A., Gainaru, Le Fèvre, Periodic I/O scheduling for super-computers, PMBS’17
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Results (expes)
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The performance estimated by our model is accurate within 3.8% for periodic schedules
and 2.3% for online schedules.
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More results (simulations)

I We generate more sets
of applications

I Simulate on
instanciations of
Intrepid and Mira.
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The DASH project

I Understanding applications patterns

I Study of robustness: what if wk and voliok are not exactly what they were supposed to
be?

I Integrating non-periodic application

I Burst-buffers integration/modeling

I Coupling application scheduler to IO scheduler

I Evaluation on real applications
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Collaborations needed:

Three steps

1. I/O Modeling

2. Algorithm design

3. Evaluation and
Integration

Application/system users:

I Data about I/O behaviors: patterns/periodicity,
volume etc.

I Discussion about models of I/O scalability

From large-scale IO managers:

I Understanding traces, what kind of properties
can we assume on the system?

I Discussion on implementation / integration

I Experiments



Dash
Data-Aware Scheduling at Higher scale

Compute Nodes

Burst Buffers

(Distributed)

ION

ION

BBsBBs

(Shared)

IO Bandwidth PFS

Nicolas Vidal is starting his PhD this
October. Talk to him ,.

Thanks to collab. and co-authors
JT Acquaviva (DDN), O Beaumont (Inria), L
Eyraud-Dubois (Inria), E Jeannot (Inria), A Gainaru
(Vanderbilt), V Le Fèvre (ENS Lyon), N Vidal (Inria)

Papers, data, code: https://project.inria.fr/dash/
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