
Context Approach Evaluation Memory Partitionning Conclusion

I/O optimizations with Data Aggregation

Florin Isaila‡∗, Emmanuel Jeannot†, Preeti Malakar∗, François Tessier∗,
Venkatram Vishwanath∗,

∗Argonne National Laboratory, USA
†Inria Bordeaux Sud-Ouest, France
‡University Carlos III, Spain

October 8, 2018

1 / 17



Context Approach Evaluation Memory Partitionning Conclusion

Data Movement at Scale

I JLESC project started early 2015
I Focus from flops to bytes:

allocate data
move data
store data
bring data to the right place at the right time

I Computer simulation: climate simulation, heart or brain modelling,
cosmology, etc
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Data Movement at Scale

I Large needs in terms of I/O: high resolution, high fidelity

Table: Example of large simulations I/O coming from diverse papers

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I Growth of supercomputers to meet the performance needs but with
increasing gaps
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Figure: Ratio IOPS/FLOPS of the #1 Top 500 for the past 20 years. Computing capability has
grown at a faster rate than the I/O performance of supercomputers.
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Complex Architectures

I Complex network topologies tending to reduce the distance between the
data and the storage

Multidimensional tori, dragonfly, ...
I Partitioning of the architecture to avoid I/O interference

IBM BG/Q with I/O nodes (Figure), Cray with LNET nodes
I New tiers of storage/memory for data staging

MCDRAM in KNL, NVRAM, Burst buffer nodes
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- Peak performance: 10 PetaFLOPS
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Two-phase I/O

I Present in MPI I/O implementations like ROMIO
I Optimize collective I/O performance by reducing network contention and

increasing I/O bandwidth
I Chose a subset of processes to aggregate data before writing it to the

storage system

Limitations:
I Better for large messages

(from experiments)
I No real efficient aggregator

placement policy
I Informations about

upcoming data movement
could help
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Figure: Two-phase I/O mechanism
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Approach

I Relevant aggregator placement while taking into account:
The topology of the architecture
The data pattern

I Efficient implementation of the two-phase I/O scheme
I/O scheduling with the help of information about the upcomming readings
and writings
Pipelining aggergation and I/O phase to optimize data movements
One-sided communications and non-blocking operations to reduce
synchronizations

I TAPIOCA (Topology-Aware Parallel I/O: Collective Algorithm)
MPI Based library for 2-phase I/O
portable through abstracted representation of the machine
generalize toward data movement at scale on HPC facility
results published in Cluster 2017
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Aggregator Placement

I Goal: find a compromise between
aggregation and I/O costs

I Four tested strategies
Shortest path: smallest distance to the
I/O node
Longest path: longest distance to the
I/O node
Greedy: lowest rank in partition (can be
compared to a MPICH strategy)
Topology-aware

How to take the topology into account in
aggregators mapping?
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Figure: Data aggregation for I/O:
simple partitioning and aggregator
election on a grid.
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Aggregator Placement - Topology-aware strategy

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v

I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j

I C1 = max
(
l × d(i ,A) + ω(i,A)

Bi→A

)
, i ∈ VC

I C2 = l × d(A, IO) + ω(A,IO)
BA→IO

Vc : Compute nodes
IO : I/O node
A  : Aggregator

C1

C2

Objective function:

TopoAware(A) = min (C1 + C2)

I Computed by each process independently in O(n), n = |VC |
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Micro-benchmark - Placement strategies

I Evaluation on Mira (BG/Q), 512 nodes, 16 ranks/node
I Each rank sends an amount of data distributed randomly between 0 and

2 MB
I Write to /dev/null of the I/O node (performance of just aggregation and

I/O phases)
I Aggregation settings: 16 aggregators, 16 MB buffer size

Table: Impact of aggregators placement strategy

Strategy I/O Bandwidth (MBps) Aggr. Time/round (ms)
Topology-Aware 2638.40 310.46
Shortest path 2484.39 327.08
Longest path 2202.91 370.40

Greedy 1927.45 421.33
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Micro-benchmark - Theta

I 10 PetaFLOPS Cray XC40 supercomputer
I 512 Theta-nodes, 16 ranks per node
I 48 aggregators, 8 MB aggregation buffer size
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HACC-IO – MIRA (BG/Q)

I I/O part of a large-scale cosmological application simulating the mass
evolution of the universe with particle-mesh techniques

I Each process manage particles defined by 9 variables (XX , YY , ZZ , VX ,
VY , VZ , phi , pid and mask)
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Figure: Data layouts implemented in HACC
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HACC-IO – MIRA (BG/Q)

I I/O part of a large-scale cosmological application simulating the mass
evolution of the universe with particle-mesh techniques

I Each process manage particles defined by 9 variables (XX , YY , ZZ , VX ,
VY , VZ , phi , pid and mask)
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I BG/Q (Mira) one file per Pset
I 4096 nodes (16 ranks/node)
I TAPIOCA: 16 aggregators per

Pset, 16 MB aggregator buffer size

Very poor performance from
MPI I/O on AoS
Up to 2.5 faster than MPI I/O
on SoA
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HACC-IO – Theta (Cray XC40)

I I/O part of a large-scale cosmological application simulating the mass
evolution of the universe with particle-mesh techniques

I Each process manage particles defined by 9 variables (XX , YY , ZZ , VX ,
VY , VZ , phi , pid and mask)
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I Theta from 2048 nodes (16
ranks/node)

I Lustre: 48 OSTs, 16 MB stripe
size

I TAPIOCA: 384 aggregators, 16
MB aggregator buffer size

AoS, 3.6 MB: 4 time faster than
MPI I/O
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Number of aggregators
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Figure: Array of structure vs structure of array

Trade-Off:
I Many aggregators: lot of I/O rounds
I Few aggregators: I/O Latency dominates
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Model Simulation

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
NB_Agg

R
ea

d_
tim

e

Layout

AoS

SoA

AoS and SoA aggregation time vs #aggregators

I 4096 nodes
I 9*1MB structures
I 16 ranks/nodes
I 56 I/O streams
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Conclusion and Perspectives

Conclusion
I I/O library based on the two-phase scheme developed to optimize data

movements
Topology-aware aggregator placement
Optimized buffering (two pipelined buffers, one-sided communications,
block size awareness)

I Very good performance at scale, outperforming standard approaches
I On the I/O part of a cosmological application, up to 15× improvement
I Start modeling I/O performance.
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