Improved Image Classification with Coarse and Fine Labels

Anuvabh Dutt, Denis Pellerin, Georges Quénot

- Get meaningful probabilities for multimedia IR tasks
 - * AVS, MED 0Ex

• Get meaningful probabilities for multimedia IR tasks

* AVS, MED OEx

 Convert query into a list of target concepts with weights and possibly Boolean formula.

• Get meaningful probabilities for multimedia IR tasks

* AVS, MED OEx

- Convert query into a list of target concepts with weights and possibly Boolean formula.
- Need to calibrate probabilities for using (and combining) concepts from various models

* ImageNet, Places, etc

• Utilise semantic relationships among concepts for tasks like classification and retrieval.

- Utilise semantic relationships among concepts for tasks like classification and retrieval.
- Classification: Rank concepts given an image.
 - * Metric: Top-K error. Normalization: soft-max.

- Utilise semantic relationships among concepts for tasks like classification and retrieval.
- Classification $\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$ an image. * Metric: Top $\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$ soft-max.

- Utilise semantic relationships among concepts for tasks like classification and retrieval.
- Classification: Rank concepts given an image.
 - * Metric: Top-K error. Normalization: soft-max.

- Utilise semantic relationships among concepts for tasks like classification and retrieval.
- Classification: Rank concepts given an image.
 * Metric: Top-K error. Normalization: soft-max.
- Retrieval: Rank images given a concept.

* Metric: MAP. Normalization: Platt.

- Scores ranges from –∞ to +∞
- Probabilities are expected to range from 0 to 1
- Sigmoid transform: p(score) = 1/(1+e^(A*score+B))
- Additional hint: among the samples within a small interval around p, a fraction of about p would have positive labels
- Platt's method: learn A and B by cross-validation to optimally satisfy the above hint

- Utilise semantic relationships among concepts for tasks like classification and retrieval.
- Classification: Rank concepts given an image.
 * Metric: Top-K error. Normalization: soft-max.
- Retrieval: Rank images given a concept.

* Metric: MAP. Normalization: Platt.

- Utilise semantic relationships among concepts for tasks like classification and retrieval.
- Classification: Rank concepts given an image.
 * Metric: Top-K error. Normalization: soft-max.
- Retrieval: Rank images given a concept.
 * Metric: MAP. Normalization: Platt.
- In both cases: average over a number of images to be categorized or over a number of concepts to be retrieved.

- Utilise semantic relationships among concepts for tasks like classification and retrieval.
- Classification: Rank concepts given an image.
 * Metric: Top-K error. Normalization: soft-max.
- Retrieval: Rank images given a concept.
 * Metric: MAP. Normalization: Platt.
- In both cases: average over a number of images to be categorized or over a number of concepts to be retrieved.
- Refine concept categories, from coarse to fine grained.

Related Work

Related Work

• YOLO9000: Better, Faster, Stronger Joseph Redmon, Ali Farhadi [arxiv:1612.08242]

Related Work

- YOLO9000: Better, Faster, Stronger Joseph Redmon, Ali Farhadi [arxiv:1612.08242]
- Classifier adaptation at prediction time.
 Amelie Royer and Christoph H Lampert. CVPR, 2015.

Neural Network

Background x_0 w_0 🗨 synapse axon from a neuron $w_0 x_0$ dendrite cell body $\sum w_i x_i + b$ w_1x_1 $w_i x_i + b$ output axon activation function $w_2 x_2$ output layer

input layer

hidden layer 1 hidden layer 2

- Neural Network
- Deep Neural Network

- Neural Network
- Deep Neural Network
- Deep Convolutional Network

• Train using stochastic gradient descent

- Train using stochastic gradient descent
 - * Gradients obtained from loss on mini-batches

- Train using stochastic gradient descent
 * Gradients obtained from loss on mini-batches
- Regularization using dropout, batchnorm.

- Train using stochastic gradient descent
 * Gradients obtained from loss on mini-batches
- Regularization using dropout, batchnorm.
- State-of-the art models in vision: ResNet, DenseNet

- Train using stochastic gradient descent
 * Gradients obtained from loss on mini-batches
- Regularization using dropout, batchnorm.
- State-of-the art models in vision: ResNet, DenseNet
- After training, the classifier predicts a probability distribution over the categories.

- Train using stochastic gradient descent
 * Gradients obtained from loss on mini-batches
- Regularization using dropout, batchnorm.
- State-of-the art models in vision: ResNet, DenseNet
- After training, the classifier predicts a probability distribution over the categories.
 - * The value assigned to a category is the "confidence" of the classifier for that category

Problem Setting

- Image classification
- Labels with semantic relationship
- Example:
 - Coarse label: vehicle
 - Corresponding fine label(s): car, truck, bike

Problem Setting

Problem Setting

Classes

beaver, dolphin, otter, seal, whale aquarium fish, flatfish, ray, shark, trout orchids, poppies, roses, sunflowers, tulips bottles, bowls, cans, cups, plates

Classifier Confidence

Classifier Confidence

Classifier Confidence

- Trained models have a confidence value for the coarse and fine categories, respectively.
- If the model captures the *semantic* structure, the confidence in the coarse category should be similar to the total confidence in the corresponding fine categories.

• We want to enforce the condition that the confidence of the coarse category should be distributed among its 'fine' categories.

Fine and Coarse Labels

Fine and Coarse Labels

• Obtain probability values for test image from coarse and fine models.

- Obtain probability values for test image from coarse and fine models.
- For each coarse category, adjust classifier prediction values such that: $\Sigma Pr(fine) = Pr(coarse)$

- Obtain probability values for test image from coarse and fine models.
- For each coarse category, adjust classifier prediction values such that: $\sum Pr(fine) = Pr(coarse)$
- Predict category which has maximum probability (confidence).

Results

- Error rate for the ResNet model after applying our adjustment scheme.
- The x-axis shows how the error changes when we move from the initial probability values to the ones enforced by our scheme.
- We observe that we steadily lower the error rate.

• No knowledge of ground truth categories required.

- No knowledge of ground truth categories required.
- Need to know only semantic relationship among categories.

- No knowledge of ground truth categories required.
- Need to know only semantic relationship among categories.
- Can be applied to any classifier which predicts probabilities over categories.

• Simple method which does not require any training.

- Simple method which does not require any training.
- Can be applied to **any** trained model.

- Simple method which does not require any training.
- Can be applied to **any** trained model.
- Only in the case of mutually exclusive and complete classes and in the case of two levels of hierarchy.

- Simple method which does not require any training.
- Can be applied to **any** trained model.
- Only in the case of mutually exclusive and complete classes and in the case of two levels of hierarchy.
- Significant performance improvement over both the fine and coarse grain classification by simply using the generic-specific information.

- Simple method which does not require any training.
- Can be applied to **any** trained model.
- Only in the case of mutually exclusive and complete classes and in the case of two levels of hierarchy.
- Significant performance improvement over both the fine and coarse grain classification by simply using the generic-specific information.
- Future work:

- Simple method which does not require any training.
- Can be applied to **any** trained model.
- Only in the case of mutually exclusive and complete classes and in the case of two levels of hierarchy.
- Significant performance improvement over both the fine and coarse grain classification by simply using the generic-specific information.
- Future work:
 - Penalize difference between fine and coarse category probabilities during training phase.

- Simple method which does not require any training.
- Can be applied to **any** trained model.
- Only in the case of mutually exclusive and complete classes and in the case of two levels of hierarchy.
- Significant performance improvement over both the fine and coarse grain classification by simply using the generic-specific information.
- Future work:
 - Penalize difference between fine and coarse category probabilities during training phase.
 - Apply to muti-level hierarchies.

- Simple method which does not require any training.
- Can be applied to **any** trained model.
- Only in the case of mutually exclusive and complete classes and in the case of two levels of hierarchy.
- Significant performance improvement over both the fine and coarse grain classification by simply using the generic-specific information.
- Future work:
 - Penalize difference between fine and coarse category probabilities during training phase.
 - Apply to muti-level hierarchies.
 - Apply other relations among probabilities at different levels.

- Simple method which does not require any training.
- Can be applied to **any** trained model.
- Only in the case of mutually exclusive and complete classes and in the case of two levels of hierarchy.
- Significant performance improvement over both the fine and coarse grain classification by simply using the generic-specific information.
- Future work:
 - Penalize difference between fine and coarse category probabilities during training phase.
 - Apply to muti-level hierarchies.
 - Apply other relations among probabilities at different levels.
- To appear in: ACM International Conference on Multimedia Retrieval (ICMR), June 2017.

Thank You.