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Motivation

• Get meaningful probabilities for multimedia IR tasks 
✴ AVS, MED 0Ex

• Convert query into a list of target concepts with 
weights and possibly Boolean formula.

•  Need to calibrate probabilities for using (and 
combining) concepts from various models  

✴ ImageNet, Places, etc
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Motivation
• Utilise semantic relationships among concepts for tasks 

like classification and retrieval.
• Classification: Rank concepts given an image.  

✴ Metric: Top-K error. Normalization: soft-max.
• Retrieval: Rank images given a concept.  

✴ Metric: MAP. Normalization: Platt.
• In both cases: average over a number of images to be 

categorized or over a number of concepts to be 
retrieved.

• Refine concept categories, from coarse to fine grained.
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Related Work

• YOLO9000: Better, Faster, Stronger               
Joseph Redmon, Ali Farhadi [arxiv:1612.08242]

• Classifier adaptation at prediction time.          
Amelie Royer and Christoph H Lampert. CVPR,
2015. 
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Background
• Train using stochastic gradient descent

✴ Gradients obtained from loss on mini-batches

• Regularization using dropout, batchnorm.

• State-of-the art models in vision: ResNet, DenseNet

• After training, the classifier predicts a probability 
distribution over the categories.
✴ The value assigned to  a category is the 

“confidence” of the classifier for that category
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Problem Setting
• Image classification 

• Labels with semantic relationship 

• Example: 

• Coarse label: vehicle 

• Corresponding fine label(s): car, truck, bike
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Fine and Coarse Labels
Pr(coarse)
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Fine and Coarse Labels
Pr(coarse)

∑ Pr(fine) = Pr(coarse)

}
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Results

• Error rate for the ResNet model after applying our adjustment scheme. 

• The x-axis shows how the error changes when we move from the initial 
probability values to the ones enforced by our scheme. 

• We observe that we steadily lower the error rate.
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Method

• No knowledge of ground truth categories required.

• Need to know only semantic relationship among 
categories.

• Can be applied to any classifier which predicts 
probabilities over categories.
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Conclusion
• Simple method which does not require any training.
• Can be applied to any trained model.
• Only in the case of mutually exclusive and complete classes and in the case of 

two levels of hierarchy.
• Significant performance improvement over both the fine and coarse grain 

classification by simply using the generic-specific information.
• Future work:

• Penalize difference between fine and coarse category probabilities during 
training phase.

• Apply to muti-level hierarchies. 
• Apply other relations among probabilities at different levels.

• To appear in: ACM International Conference on Multimedia Retrieval (ICMR), 
June 2017.
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Thank You.
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