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* Get meaningful probabilities for multimedia IR tasks
* AVS, MED OEXx

* Convert guery into a list of target concepts with
weights and possibly Boolean formula.

* Need to calibrate probabilities tfor using (and
combining) concepts from various models

* ImageNet, Places, etc
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Votivation

e Scores ranges from —e to +

* Probabillities are expected to range from 0O to 1
- Sigmoid transform: p(score) = 1/(1+eA"score+B))

« Additional hint: among the samples within a small
interval around p, a fraction of about p would have
positive labels

» Platt's method: learn A and B by cross-validation to
optimally satisfy the above hint
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Utilise semantic relationships among concepts for tasks
ike classification and retrieval.

Classification: Rank concepts given an image.

* Metric:

Retrieval;

op-

Ran

K error. Normalization: sof

T-max.

K Images given a concept.

* Metric: MAP. Normalization: Platt.

In both cases: average over a number of images to be
categorized or over a number of concepts to be

retrieved.

Refine concept categories, from coarse to fine grained.
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Related Work

* YOLO9000: Better, Faster, Stronger
Joseph Redmon, Ali Farhadi [arxiv:1612.08242]

* Classifier adaptation at prediction time.

Amelie Royer and Christoph H Lampert. CVPR,
2015.
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Background

Train using stochastic gradient descent
* (Gradients obtained from loss on mini-batches

Regularization using dropout, batchnorm.

State-of-the art models in vision: ResNet, DenseNet

After training, the classifier predicts a probability
distribution over the categories.

* The value assigned to a category Is the
‘confidence” of the classitier for that category
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Problem Setting

Image classification

Labels with semantic relationship
Example:

* Coarse label: vehicle

* Corresponding fine label(s): car, truck, bike
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Problem Setting
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Classes

beaver, dolphin, otter, seal, whale
aquarium fish, flatfish, ray, shark, trout
orchids, poppies, roses, sunflowers, tulips
bottles, bowls, cans, cups, plates
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Votivation

* Trained models have a confidence value tfor the
coarse and fine categories, respectively.

* |f the model captures the semantic structure, the
confidence in the coarse category should be
similar to the total confidence in the corresponding
fine categories.
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Votivation

* We want to enforce the condition that the
confidence of the coarse category should be
distributed among its ‘fine’ categories.
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Votivation
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* Obtain probability values for test image from
coarse and fine models.
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Vliethod

* Obtain probability values for test image from
coarse and fine models.

e For each coarse category, adjust classifier
orediction values such that: > Pr(fine) = Pr(coarse)

* Predict category which has maximum probability
(confidence).
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Results
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* Error rate for the ResNet model after applying our adjustment scheme.

* The x-axis shows how the error changes when we move from the initial
probability values to the ones enforced by our scheme.

* We observe that we steadily lower the error rate.
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Vliethod

* No knowledge of ground truth categories required.

* Need to know only semantic relationship among
categories.

 Can be applied to any classifier which predicts
probabillities over categories.
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Fine

Label
Image »| Block [—| Block |—| Block |[—|FC/SM |—|LL
Image »| Block |—| Block »| Block +HFC/SM | L
Coarse

Label

> LosS

> Loss

17



Merged Architecture

Fine
Label
» Block »| Block »| Block » FC / SM | LL
Image —
» Block »| Block »| Block » FC / SM " LL
Coarse

Label

*Loss

18



Merged Architecture

Fine
Label

Imag —

» FC / SM

| LL

»FC / SM

| LL

Coarse
Label

— LosS



CIFAR-20

0.160

0.155

0.150 -

0.145

0.140

0.135

0.130

0.125

0.00 0.25 0.50 0.75 1.60 1.25 1.50 1.75 2.00

CIFAR-100

0.250

0.245

0.240

0.235

0.230 ~

0.225

0.220

JAL(/

0.215

0.00 0.25 050 0.75 1.00 125 150 1.75 2.00

seperate
merge-0
merge-1
merge-2
merge-3

20



Conclusion



Conclusion

e Simple method which does not require any training.

21



Conclusion

e Simple method which does not require any training.

« Can be applied to any trained model.

21



Conclusion

e Simple method which does not require any training.
« Can be applied to any trained model.

* Only in the case of mutually exclusive and complete classes and in the case of
two levels of hierarchy.

21



Conclusion

Simple method which does not require any training.
Can be applied to any trained model.

Only in the case of mutually exclusive and complete classes and in the case of
two levels of hierarchy.

Significant performance improvement over both the fine and coarse grain
classification by simply using the generic-specific information.

21



Conclusion

Simple method which does not require any training.
Can be applied to any trained model.

Only in the case of mutually exclusive and complete classes and in the case of
two levels of hierarchy.

Significant performance improvement over both the fine and coarse grain
classification by simply using the generic-specific information.

Future work:

21



Conclusion

Simple method which does not require any training.
Can be applied to any trained model.

Only in the case of mutually exclusive and complete classes and in the case of
two levels of hierarchy.

Significant performance improvement over both the fine and coarse grain
classification by simply using the generic-specific information.

Future work:

o Penalize difference between fine and coarse category probabilities during
training phase.

21



Conclusion

Simple method which does not require any training.
Can be applied to any trained model.

Only in the case of mutually exclusive and complete classes and in the case of
two levels of hierarchy.

Significant performance improvement over both the fine and coarse grain
classification by simply using the generic-specific information.

Future work:

o Penalize difference between fine and coarse category probabilities during
training phase.

* Apply to muti-level hierarchies.

21



Conclusion

Simple method which does not require any training.
Can be applied to any trained model.

Only in the case of mutually exclusive and complete classes and in the case of
two levels of hierarchy.

Significant performance improvement over both the fine and coarse grain
classification by simply using the generic-specific information.

Future work:

o Penalize difference between fine and coarse category probabilities during
training phase.

* Apply to muti-level hierarchies.

* Apply other relations among probabilities at different levels.

21



Conclusion

Simple method which does not require any training.
Can be applied to any trained model.

Only in the case of mutually exclusive and complete classes and in the case of
two levels of hierarchy.

Significant performance improvement over both the fine and coarse grain
classification by simply using the generic-specific information.

Future work:

o Penalize difference between fine and coarse category probabilities during
training phase.

* Apply to muti-level hierarchies.
* Apply other relations among probabilities at different levels.

To appear in: ACM International Conference on Multimedia Retrieval (ICMR),
June 2017.
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Thank You.
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