Introduction to Convolutional Neural Networks

Vicky Kalogeiton
What are CNNs?

CNN = Neural Network with a convolution operation instead of matrix multiplication in at least one of the layers.
A typical CNN architecture
Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions.

CONV, ReLU

e.g. 6 5x5x3 filters
ConvNet is a sequence of Convolutional Layers, interspersed with activation functions.

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Biological neuron & mathematical model
impulses carried toward cell body

dendrites

branches of axon

impulses carried away from cell body

axon

axon terminals

cell body

nucleus

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Convolution
The convolution operation
The convolution operation

Input:

\[
\begin{array}{cccc}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
\end{array}
\]

Kernel:

\[
\begin{array}{cc}
 w & x \\
 y & z \\
\end{array}
\]

Output:

\[
\begin{array}{c}
 aw + bx + ey + fz \\
 bw + cx + fy + gz \\
 cw + dx + gy + hz \\
 cw + fx + iy + jz \\
 fw + gx + jy + kz \\
 gw + hx + ky + lz \\
\end{array}
\]

Diagram showing the convolution process with an input grid, a kernel, and the resulting output grid.
3 reasons why convolution is cool
Reason 1: Sparse Connectivity
Reason 2: Parameter sharing
Reason 3: Equivariant Representations

When the input changes -> output changes in the same way

Eg. Let I be a function giving images brightness at integer coordinates.
Let g be a function mapping one image function to another image function,
such that $I' = g(I)$ is the image function with $I'(x,y) = I(x-1,y)$.
This shifts every pixel of I one unit to the right.
If we apply this transformation to I, then apply convolution,
the result will be the same as if we applied convolution to I',
then applied the transformation g to the output.
Convolution Layers
Convolution Layer

32x32x3 image

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”

Filters always extend the full depth of the input volume

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Convolution Layer

1 number:
the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. $5 \times 5 \times 3 = 75$-dimensional dot product + bias)

$$w^T x + b$$

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

consider a second, green filter

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Stride

Strided convolution

Downsampling

Convolution
A closer look at spatial dimensions:

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn’t fit! cannot apply 3x3 filter on 7x7 input with stride 3.

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Output size:
\[(N - F) / \text{stride} + 1\]

e.g. \(N = 7, F = 3:\)

- stride 1 => \((7 - 3)/1 + 1 = 5\)
- stride 2 => \((7 - 3)/2 + 1 = 3\)
- stride 3 => \((7 - 3)/3 + 1 = 2.33\)
Zero-Padding
Zero-Padding: common to the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Zero-Padding: common to the border

e.g. input 7x7
3x3 filter, applied with **stride 1**
pad with 1 pixel border => what is the output?

7x7 output!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Zero-Padding: common to the border

E.g. input 7x7
3x3 filter, applied with stride 1
Pad with 1 pixel border => what is the output?

7x7 output!
In general, common to see CONV layers with
Stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (Will preserve size spatially)
E.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3

Slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Examples time:

Input volume: \textbf{32x32x3}
10 5x5 filters with stride 1, pad 2

Output volume size: ?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Examples time:

Input volume: \(32 \times 32 \times 3\)
10 5x5 filters with stride 1, pad 2

Output volume size:
\((32+2 \times 2-5)/1+1 = 32\) spatially, so
\(32 \times 32 \times 10\)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Examples time:

Input volume: \textbf{32x32x3}
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Examples time:

Input volume: $32 \times 32 \times 3$
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has $5 \times 5 \times 3 + 1 = 76$ params (+1 for bias)
=> $76 \times 10 = 760$

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Summary

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 - F + 2P)/S + 1$
 - $H_2 = (H_1 - F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.
Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 - F + 2P)/S + 1$
 - $H_2 = (H_1 - F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

- $K = \text{(powers of 2, e.g. 32, 64, 128, 512)}$
 - $F = 3, S = 1, P = 1$
 - $F = 5, S = 1, P = 2$
 - $F = 5, S = 2, P = ?$ (whatever fits)
 - $F = 1, S = 1, P = 0$

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Local connectivity &
tiled convolution
Local connectivity

Locally connected layer

Convolutional layer

Fully connected layer
Tiled convolution

Locally connected layer

Tiled convolution

Convolutional layer
Pooling
Effect = invariance to small translations of the input
Pooling
Pooling
- makes the representations smaller and more manageable
- operates over each activation map independently

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Max Pooling

Single depth slice

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

max pool with 2x2 filters and stride 2

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Summary

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires three hyperparameters:
 - their spatial extent F
 - the stride S
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 - F)/S + 1$
 - $H_2 = (H_1 - F)/S + 1$
 - $D_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers
Summary

Common settings:

- $F = 2$, $S = 2$
- $F = 3$, $S = 2$

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 - F)/S + 1$
 - $H_2 = (H_1 - F)/S + 1$
 - $D_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Back propagation
Convolutional Network (AlexNet)

input image
weights

loss

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, \ y = 5, \ z = -4 \)
$f(x, y, z) = (x + y)z$

e.g. $x = -2, y = 5, z = -4$

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[
\begin{align*}
q &= x + y \\
\frac{\partial q}{\partial x} &= 1, \quad \frac{\partial q}{\partial y} = 1
\end{align*}
\]

\[
\begin{align*}
f &= qz \\
\frac{\partial f}{\partial q} &= z, \quad \frac{\partial f}{\partial z} = q
\end{align*}
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[
q = x + y, \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz, \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2, y = 5, z = -4\)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, y = 5, z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
\[f(x, y, z) = (x + y)z \]

e.g. \(x = -2 \), \(y = 5 \), \(z = -4 \)

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \)

Chain rule:

\[
\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}
\]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
\[f(x, y, z) = (x + y)z \]
e.g. \(x = -2, \ y = 5, \ z = -4 \)

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Want: \(\frac{\partial f}{\partial x}, \ \frac{\partial f}{\partial y}, \ \frac{\partial f}{\partial z} \)
\[f(x, y, z) = (x + y)z \]

\[\text{e.g. } x = -2, \ y = 5, \ z = -4 \]

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \ \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \ \frac{\partial f}{\partial z} = q \]

Want: \[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \]

\[\text{Chain rule:} \]
\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} \]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
activations

\[\begin{align*}
x & \quad \xrightarrow{f} \quad z \\
y & \quad \xrightarrow{f} \quad z
\end{align*} \]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
activations

\[
\frac{\partial z}{\partial x}, \quad \frac{\partial z}{\partial y}
\]

“local gradient”

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
activations

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
activations

\[\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x} \]

\[\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y} \]

“local gradient”

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
activations

\[
\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}
\]

\[
\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}
\]

“local gradient”

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient… “switcher”?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Activation function
Activation Functions

\[f \left(\sum_{i} w_{i} x_{i} + b \right) \]

\(x_{0} \) \(w_{0} \) synapse \(w_{0} x_{0} \) dendrite
axon from a neuron

\(w_{1} x_{1} \)

\(w_{2} x_{2} \)

cell body

output axon

activation function

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Activation Functions

Sigmoid
\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\text{tanh} \quad \text{tanh}(x)

\text{ReLU} \quad \text{max}(0, x)

Leaky ReLU

Maxout
\[\text{max}(w_1^T x + b_1, w_2^T x + b_2) \]

ELU
\[f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \leq 0 \end{cases} \]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Activation Functions

- Squashes numbers to range $[0,1]$;
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron.

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Activation Functions

- Squashes numbers to range \([0,1]\)
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. \(\exp()\) is a bit compute expensive

Sigmoid

\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

activation({x})

[LeCun et al., 1991]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
ReLU (Rectified Linear Unit)

Computes $f(x) = \max(0,x)$

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

[Krizhevsky et al., 2012]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
ReLU (Rectified Linear Unit)

Computes $f(x) = \max(0,x)$

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- ReLU units can “die”

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Activation Functions

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Leaky ReLU

\[f(x) = \max(0.01x, x) \]

[Mass et al., 2013] [He et al., 2015]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
In practice

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid
Preprocessing data
Preprocessing data

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Preprocessing data

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
In practice: for images

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
 (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers)

Not common to normalize variance, to do PCA or whitening

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Weights initialization
Weights initialization

• If the weights in a network start too small, then the signal shrinks as it passes through each layer until it’s too tiny to be useful.
• If the weights in a network start too large, then the signal grows as it passes through each layer until it’s too massive to be useful.
Weights initialization

• All zero initialization

• Small random numbers

• Draw weights from a Gaussian distribution with standard deviation of $\sqrt{2/n}$, where n is the number of outputs to the neuron
Batch normalization
Batch normalization

Initialization of NNs by explicitly forcing the activations throughout the network to take on a unit Gaussian distribution at the beginning of the training.

Normalization is a simple differentiable operation

[loffe and Szegedy, 2015]
Batch normalization

Usually inserted after Fully Connected and/or Convolutional layers, and before nonlinearity.

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Batch normalization

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout
Thank you for your attention
AlexNet example
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: \((227-11)/4+1 = 55\)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: $(55-3)/2+1 = 27$
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson
Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

- [227x227x3] INPUT
- [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
- [27x27x96] MAX POOL1: 3x3 filters at stride 2
- [27x27x96] NORM1: Normalization layer
- [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
- [13x13x256] MAX POOL2: 3x3 filters at stride 2
- [13x13x256] NORM2: Normalization layer
- [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
- [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
- [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
- [6x6x256] MAX POOL3: 3x3 filters at stride 2
- [4096] FC6: 4096 neurons
- [4096] FC7: 4096 neurons
- [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson