Solving Strong Stackelberg Equilibrium in Stochastic Games

Víctor Bucarey López

vbucarey@ing.uchile.cl

INRIA – LILLE

December 2017

Joint Collaboration...

- Fernando Ordoñez Departamento Ingeniería Industrial Universidad de Chile.
- Eugenio Della Vecchia FCEIA - Universidad Nacional de Rosario.
- Alain Jean Marie INRIA - Research center of Sophia-Antipolis Méditerranée

Project DyGaMe STIC AmSud

Stackelberg Game

STRONG STACKELBERG EQUILIBRIUM

Leader commits to a payoff maximizing strategy.
Follower best responds
Follower breaks ties in favor of the leader

	b_1	<i>b</i> ₂
a_1	(10,-10)	(-5, 6)
a ₂	(-8,4)	(6, -4)

Follower

Follower

 b_2

5, 6

 b_2

 $1 \rightarrow$

6x+-4(1-x)

-10x+4(1-x)

Stochastic Games

 $\mathcal{G} = (\mathcal{S}, \mathcal{A}, \mathcal{B}, r_A, r_B, Q, \beta_A, \beta_B, \tau)$

Stochastic Games

Feedback Policies: $\pi = \pi(s, t)$ $= \{f_1, \dots, f_{\tau}\}$

Stationary Policies: $\pi = \pi(s)$ $= \{f, ..., f\}$

General Objectives

- Existence and characterization of value functions
- Existence of equilibrium strategies
- Algorithms to compute them

• State of the art

- For finite horizon, Stackelberg equilibrium in stochastic games via Dynamic programming.
- Mathematical programming approach to compute stationary values.

Our contribution

- We define suitable Dynamic Programming operators.
- We used it to characterize value functions and to prove existence and unicity of stationary values forming a Strong Stackelberg Equilibrium for a family of problems.
- We define Value Iteration and Policy Iteration for this family and prove its convergence.
- We prove via counterexample that this methodology is not always applicable for the general case.

Stackelberg Equilibrium in Stochastic Games

Stackelberg Equilibrium:

$$(\pi^*,\gamma^*)$$

$$v_A^{\pi^*,\gamma^*}(s) = \max v_A^{\pi,\gamma^*}(s)$$

$$\gamma^* \in \arg \max v_B^{\pi,\gamma}(s)$$

Best response functional

Given a stationary policy and future values, g computes the best actions to perform in each state.

$$g(f, v_B)(s) = \operatorname{argmax}_{b \in \mathcal{B}} \sum_{a \in \mathcal{A}} f(a, s) \left[r_B^{ab}(s) + \beta_B \sum_{z \in S} Q^{ab}(z|s) v_B(z) \right]$$

• Myopic follower strategies (MFS)

$$g(f, v_B) = g(f)$$

MFS case

• Theorem 1.

- a) T_A^f , T_A are monotone.
- b) For any stationary strategy f, the operator T_A^f is a contraction on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$ of modulus β_A .
- c) The operator T_A is a contraction on $(\mathbb{R}^{|S|}, \|\cdot\|_{\infty})$ of modulus β_A .

• Theorem 2.

There exists a equilibrium value function v_A^* and it is the unique solution of $v_A^* = T_A(v_A^*)$. Moreover, the pair f^* and $g(f^*)$ which maximizes the RHS of (1) are the equilibrium strategies.

Value Iteration algorithm

Theorem 3.

The sequence of value functions v_A^n converges to v_A^* . Furthermore, v_A^* is the fixed point of T_A with the following bound:

$$v_A^* - v_A^n \| \le \beta_A^n \frac{\|r_A\|_{\infty}}{1 - \beta_A}$$

Repeat until convergence

Value Iteration algorithm

Algorithm 1 Value function iteration: Infinite horizon

Require: $\varepsilon > 0$ 1: Initialize with n = 1, $v_A^0(s) = 0$ for every $s \in S$ and $v_A^1 = T_A(v_A^0)$ 2: while $||v_A^n - v_A^{n-1}||_{\infty} > \varepsilon$ do 3: Compute v_A^{n+1} by $v_A^{n+1}(s) = T_A(v_A^n)(s)$. Finding f^* and $g^*(f)$ at stage n. 4: n := n + 15: end while

6: return Stationary Stackelberg policies $\pi^* = \{f^*, \ldots\}$ and $\gamma^* = \{g^*, \ldots\}$

Policy Iteration algorithm

Repeat until convergence

Theorem 4.

The sequence of functions $u_{A,n}$ verifies $u_{A,n} \uparrow v_A^*$. Furthermore, if for any $n \in \mathbb{N}$, $u_{A,n} = u_{A,n+1}$ then it is true that $u_{A,n} = v_A^*$.

Policy Iteration algorithm

Algorithm 2 Policy Iteration (PI)

- 1: Choose a stationary Stackelberg pair $(f_0, g(f_0))$.
- 2: while $||u_{A,n} u_{A,n+1}|| > \varepsilon$ do
- 3: Evaluation Phase: Find $u_{A,n}$ fixed point of the operator $T_A^{f_n}$.
- 4: Improvement Phase: Find a strategy f_{n+1} such that

$$T_A^{f_{n+1}}(u_{A,n}) = T_A(u_{A,n})$$

5: n := n+1

- 6: end while
- 7: return Stationary Stackelberg policies $\pi^* = \{f^*, \ldots\}$ and $\gamma^* = \{g(f^*), \ldots\}$

Computational Results

Computational Results

Computational Results

General case

Algorithm 3 Value Iteration (VI): Finite horizon for the general ca

4: end for

5: return Stackelberg policies $\pi^* = \{f_0^*, \ldots, f_\tau^*\}$ and $\gamma^* = \{g_0^*, \ldots, g_\tau^*\}$

This algorithm returns an Strong Stackelberg Equilibrium in **feedback policies** for the τ -horizon problem.

What about **stationary policies**?

 $\beta_A = \beta_B = 0.9$

 $\beta_A, \beta_B = \frac{1}{2}$

State s1

State s2

Algorithm 4 VI modified: Infinite horizon for the general case

1: Initialize with
$$n = 0$$
, $v_A^0(s) = v_B^0(s) = 0$ for every $s \in S$.
2: for $n = 1, \dots, MAX_IT$ do
3: Find the pair (v_A^n, v_B^n) by
 $(v_A^n, v_B^n)(s) = T(v_A^{n-1}, v_B^{n-1})(s)$.
Finding f^* and g^* SSE strategies at stage $n - 1$.
4: if $(v_A^n, v_B^n) = (v_A^{n-1}, v_B^{n-1})$ then
5: return (v_A^n, v_B^n) fixed point of T .
6: end if
7: if $||(v_A^n, v_B^n) - (v_A^{n-1}, v_B^{n-1})|| > 2\frac{\beta^{n-1}}{1-\beta}||(r_A, r_B)||$ then
8: return UNDEFINED 1.
9: end if
10: end for
11: return UNDEFINED 2.
We get tired of finding an equilibrium.

Instances not Solved %

Security Games

Leader = DEFENDER

Follower = ATTACKER

Payoffs only depends on whether a location is protected or not.

Ln

$Reward_{D} > 0$ $Penalty_{A} < 0$

Conclusions

- We define suitable dynamic programming operators and we use it to prove unicity of values of Strong Stackelberg games in stationary policies for a family of problems.
- We define Value Iteration and Policy Iteration algorithms for finding Stackelberg stationary equilibrium.
- We prove via counterexample that this methodology is not always applicable for the general case.
- We study security games and we conjecture that operators for this type of games are contractive.

Thank You!

Víctor Bucarey López vbucarey@ing.uchile.cl INRIA – LILLE December 2017

