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Introduction

Static games

Static game de�nition

A static game under a strategic form with complete information is
the 3-uple (N , {Ai}i ,Ri ) where

N is the (�nite) set of players (size N).

Ai is the set of action ai of player i (size mi ).

R i (a) is the reward of player i ,
with a = (a1, . . . aN) the set of the actions played by the
agents

A strategy is said :

pure strategy : when the selection of the action is
deterministic.

mixed strategy : when each of the action receive a probability
to be chosen :
in this case πi (aij) is the probability of player i to play aij .
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Static game de�nition II

The Utility of agent i is

r i (πi , π−i ) =
∑
ai∈Ai

∑
a−i∈A−i

R(ai , a−i )πi (ai )π−i (a−i ). (1)

Dé�nition (Pure Nash Equilibrium)

A set of pure strategies a∗ is a Nash Equilibrium if, for all i ,

R(ai
∗
, a−i

∗
) ≥ R(ai , a−i

∗
) ∀ ai ∈ Ai

Dé�nition (Mixed Nash Equilibrium)

A set π∗ of mixed strategies is a Nash Equilibrium if, for all i ,

r(πi
∗
, π−i

∗
) ≥ r(πi , π−i

∗
) ∀ πi
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Zero-Sum static games

Zero-Sum game : the sum of the utilities of all players is null.

Two players Zero-Sum game : the reward of a player 1 is equal to
the loss of player 2 i.e. ∀a1, a2 R1(a1, a2) = −R2(a1, a2).

Letting, r(π1, π2) = r1(π1, π2). In a two players ZS game if
(π1
∗
, π2
∗
) form a Nash Equilibrium they satis�es

r(π1, π2
∗
) ≤ r(π1

∗
, π2
∗
) ≤ r(π1

∗
, π2) ∀π1π2 .

and are called Optimal strategies.

Théorème (Minimax (Von Neuman))

A 2 player ZS Game has a value V if and only if

max
π1

min
π2

r(π1, π2) = min
π2

max
π1

r(π1, π2) = V
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Static Games and linear Programming

[Filar and Vrieze 96], when solving Minimax equation one can
restrict to extreme points :

max
π1

min
π2

∑
i

∑
j

π1(i)π2(j)R(a1i , a
2

j ) = max
π1

min
j

∑
i

π1(i)R(a1i , a
2

j )

Player 1 should then solve

maxmin
j

∑
i

π1(i)R(a1i , a
2

j )

s.c.∑
i

π1(i) = 1

π1(i) ≥ 0 ∀i .

max v

s.c. v ≤
∑
i

π1(i)R(a1i , a
2

j ) ∀ j∑
i

π1(i) = 1

π1(i) ≥ 0 ∀i .
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Stochastic games

Stochastic Games description

We assume

A dynamic game states of which changes over time

A game di�erent in each state

Simultaneous actions of players

A function describes the dynamic evolution of the system w.r.t
the simultaneous plays and the state

When the evolution function is random it is a stochastic game.

Dé�nition (Information Models)

Perfect Information The players knows the set of actions, states

and rewards until step t − 1.

Closed Loop The player knows the the current state of the game
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Stochastic Games de�nition

A stochastic game is a 5-uple (N ,S,A,R,P) with :

N is the (�nite) set of player (size N),

S is the state space (size S),

A = {Ai}i∈{1,...,N} is the set of all actions where Ai is the set

of actions ai of player i (size mi ),

Ri is the instantaneous reward of player i .
Ri (s, a

1, . . . , aN) depends on state and actions of players

P the transition probability p(s ′|s, a) to switch in state s ′ from
s when a = (a1, . . . , aN) is played.

Small Taxonomy :
Stochastic Game : transition function depends on the history
Markov Game : transition function depends on the state
Competitive Game : 2 player Zero Sum Markov Game
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Perfect Nash Equilibrium

Strategy : the strategy πi of player i is the vector |S | ×mi

πi = (πi
1
, . . . , πiS) with π

i
1
the mixed strategy on action in state 1.

Expected utility r ik(s, π) is the expected instantaneous reward in s
at step k w.r.t π = (π1, . . . , πN).

The Utility of player i in state s is vi (s, π) (γ the discount factor) :

vi (s, π) = Es

∞∑
t=0

γ i
t
(r ik(s, π))

t .

Dé�nition (Nash Equilibrium in stochastic game)

A set of strategies π∗ = (π1
∗
, . . . , πN

∗
) is a N.E. if, ∀s ∈ S and ∀i :

vi (s, π
∗) ≥ vi (s, π

1∗, . . . , πi−1
∗
, πi , πi+1∗, . . . , πN

∗
) ∀πi

Interested by Perfect Nash Equilibrium = N.E. of any sub-games
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Competitive Games

A competitive game is a 2 players Markov Game.
It is a discounted game
It is a Zero Sum game

r1(s, a1, a2) + r2(s, a1, a2) = 0, ∀s ∈ S, a1 ∈ A1(s), a2 ∈ A2(s).

The strategies studied are the Markov Stationary Policies than for
static

We have the equivalent de�nition of optimal strategies

v(π1, π20) ≤ v(π10, π
2

0) ≤ v(π10, π
2) .
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Shapley Equation

A competitive game can be seen as a succession of static games
each one de�nes an Auxiliary matrix game depending on the state,
the strategy and the value function :

R(s, v) =

[
r(s, a1, a2) + β

∑
s′∈S

p(s ′|s, a1, a2)v(s ′)

]m1(s),m2(s)

a1=1,a2=2

(2)

It follows the Shapley Equation

v(s) = val[R(s, v)]. (3)

From [Shapley53] (2 players), [Find 64] (N players) :

The �x point equation exists and has an unique solution which
is called the value vector.
If the couple π1

0
, π2

0
is a pair of optimal strategies then

πi
0
is the stationary optimal strategy of player i .
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Iterative Methods

Initial Shapley Algorithm

Step 1 Start with any v0 : ∀s, v0(s) has any value
Step 2

Repeat

for s ∈ S do :
-Build auxiliary game R(s, vn−1)[
r(s, a1, a2) + β

∑
s′∈S p(s

′|s, a1, a2)v(s ′)
]
.

-Compute (with Shapley Snow method) the value
and let vn(s) = val [R(s, vn−1)]

end for
until ‖vn(s)− vn−1(s)‖ < ε ∀s
Step 3

for s ∈ S do :
- Let v(s) = vn(s), Build R(s, v)
- Compute π1(s) et π2(s) π(s) for game R(s, v)

end for
return v(s), π1(s), π2(s) ∀s.
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Shapley Algorithm with linear Programming

Step 1 Start with any v0 : ∀s, v0(s) has any value
Step 2

Repeat

for s ∈ S do :
-Build auxiliary game R(s, vn−1)[
r(s, a1, a2) + β

∑
s′∈S p(s

′|s, a1, a2)v(s ′)
]
.

-Compute with LP the value and let vn(s) = val [R(s, vn−1)]
val [R(s, vn−1)] = maxπ1 mina2∈A2

∑
a1 R(s, a

1, a2)π1(a1).
end for

until ‖vn(s)− vn−1(s)‖ < ε ∀s
Step 3

for s ∈ S do :
- Let v(s) = vn(s), - Build R(s, v)
- Compute (with LP) π1(s) et π2(s) π(s) for game R(s, v)

end for
return v(s), π1(s), π2(s) ∀s.
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Ho�man Karp Algorithm

Step 1 Start with approximation v0(s) = 0 ∀s.
Step 2 At step n
Build matrix R(s, vn−1)
For all s,
Find π2n(s) an optimal strategy of R(s, vn−1) for player 2

Step 3

For all s solve the MDP
vn(s) = maxπ1 vβ(s, π

1, π2n(s))
Step 4

if ‖vn − vn−1‖ > ε
Then n = n + 1 and go to step 2
else stop and return v = vn, π

2 = π2n and π1.
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Pollacheck-Avi Itzak Algorithm

Step 1 Start with arbitrary approximation of v0 :
∀s, v0(s) has any value.

Step 2 At step n, the value vn−1 is known.
For s ∈ S do
Build matrix R(s, vn−1)
Compute the two optimal strategies of game [R(s, vn−1)]
let π1n and π2n be these two strategies

Step 3

Compute the value of the game
vn = [I − βP(π1n, π2n)]−1r(π1n, π2n).

Step 4

If π1n = π1n−1 and π1n = π2n−1) then stop
else go to step 2
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Remind on Modi�ed Policy Iteration

In Markov Decision Process Framework, Modi�ed Policy Iteration is
a variant of Policy Iteration that avoid to solve a linear system.
Step 1 Start with any v0
Step 2 At step n
For all s,
Find the optimal deterministic Markov policy

πn is an optimal strategy of game R̃(s, vn−1)
Step 3 (in the classical PI algorithm)
Compute the value of the game
vn = [I − βP(πn)]−1r(π).

Step 3 (in the Modi�ed Policy Iteration)
Approximate the value of the game

u0 = vn−1 Repeat uk = R̃(s, uk−1)
until k = m vn = um Step 4

If πn = πn−1 then stop
else go to step 2
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van der Wal Algorithm (78)

Step 1 Start with v0 such that R(s, v0) ≤ v0(s) ∀s.
Step 2 At step n
Build matrix R(s, vn−1)
For all s,
Find π2n(s) an optimal strategy of game R(s, vn−1)

Step 3

For all s approximate the MDP solution
Repeat m times
ṽ = vn−1
ṽn+1(s) = maxπ1 ṽβ(s, π

1, π2n(s))
vn = ṽm

Step 4

If ‖vn − vn−1‖ > ε n = n + 1 go to step 2
Else stop and return
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Remind on MDP and Linear Programming

We search maxπ∈Π vπ satisfying the D.P. equation

v(s) = max
a

(
r(s, a) + β

∑
s′∈S

p(s ′|s, a)v(s ′)

)
, ∀s ∈ S .

Since (L is the Bellman Operator), if v ≥ Lv then v ≥ v∗ and then∑
s v(s) ≥

∑
s v
∗(s). We can solve the problem by minimizing the

sum insuring the respect of the constraints v ≥ Lv .
We get the primal [Filar96]

min
v∈ν

S∑
s=1

1

S
v(s) (Pβ)

with the set of constraints :

v(s) ≥ r(s, a) + β
S∑

s′=1

p(s ′|s, a)v(s ′), ∀a ∈ A(s) , ∀s ∈ S.
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Single Controller Game

We consider a game in which transitions are controlled only by
player 1. It has the property than

p(s ′|s, a1, a2) = p(s ′|s, a1), (4)

for all s, s ′ ∈ S, a1 ∈ A1(s), a2 ∈ A2(s).

Fact 1. In the game [R(s, v)], the coordinate with index a1, a2 can
be expressed by :

r(s, a1, a2) + β
∑
s′∈S

p(s ′|s, a1)v(s ′) .

Fact 2. With the optimal strategies Equation, we have

v(π1(s), π20(s)) ≤ v(π10(s), π
2

0(s))

for any π1(s) and namely for all pure strategies (i.e. actions).
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Single Controller Game (Primal)

Fact 1 and Fact 2 gives

vβ ≥
∑
a2

π20(s, a
2)r(s, a1, a2) + β

∑
s′∈S

p(s ′|s, a1)vβ(s ′) ∀s, a1.

This leads to the Primal formulation

min
S∑

s′=1

1

S
v(s

′
) (Pβ(1))

under constraints :

(a) v(s) ≥
∑m2(s)

a2=1
r(s, a1, a2)π2(s, a2) +

β
S∑

s′=1

p(s ′|s, a1)v(s ′), ∀ s ∈ S, ∀ a1 ∈ A1(s),

(b)
∑

a2∈A2(s)

π2(s, a2) = 1, ∀ s ∈ S,

(c) π2(s, a2) ≥ 0, ∀ s ∈ S.
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Single Controller Game (Dual)

max
S∑

s=1

z(s) (Dβ(1))

under constraints :

d)
S∑

s=1

∑
a1∈A1(s)

[δ(s, s
′
)− βp(s ′ |s, a1)]xs a1 =

1

S
, ∀ s ′ ∈ S ,

e) z(s) ≤
m1(s)∑
a1=1

r(s, a1, a2)x(s, a1) , ∀ s ∈ S , ∀ a2 ∈ A2(s) ,

f) x(s, a1) ≥ 0, ∀ s ∈ S, ∀ a1 ∈ A1(s) .

with x(s) = (x(s, 1), x(s, 2), ..., x(s,m1(s))) ∀s ∈ S.
Theorem 3.2.1 of [Vrieze96] insures that from the solutions of the
primal and the dual we obtain the value and the optimal strategies.
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Other Model

There is other models for which linear programming works :

Separable reward and transition independent of the state

Switching Controller Game

M1 Transform it in a single controller
M2 Solve successive alternates of primal and dual problems
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Extension

For a general model, this does not extend.
Indeed since fact 1 does not occur then Fact2 becomes

vβ ≥
∑
a2

π20(s, a
2)r(s, a1, a2) + β

∑
s′∈S

∑
a2

π20(s, a
2)p(s ′|s, a1, a2)vβ(s ′)

∀s, a1

This is not linear but bilinear. This is a Non Linear Problem (NLP).
So, no method of LP applies.

However, we have two NLP (one for each player) and we can
express a single NLP solutions of which are the value of the game
and the stationary policies.

Theoretically interesting but hard to solve numerically.
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Reinforcement Learning

Reinforcement learning algorithms to learn equilibrium are base on
the Q learning (Sutton 1994) Method.

The seminal algorithm is from Litman in 1994. It learns value
function with Q learning method and solves some static zero sum
games at each iteration.

It has been improved by Nash Q framework
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