Solving Stackelberg Equilibrium in Stochastic Games.

Víctor Bucarey López

vbucarey@ing.uchile.cl

FCEIA - UNR - Rosario

November 2nd, 2017

Stackelberg Game

Leader

Stackelberg Game

Stackelberg Game

Strong Stackelberg Equilibrium

- Leader commits to a payoff maximizing strategy.
- Follower best responds.
- Follower breaks ties in favor of the leader.

Example

	b_1	b_2
a_1	(10,-10)	(-5,6)
a 2	(-8,4)	(6, -4)

MIP formulation

$$\max v_{A}$$

$$v_{A} \leq 10x_{1} + -8x_{2} + M(1 - y_{1})$$

$$v_{A} \leq -5x_{1} + 6x_{2} + M(1 - y_{2})$$

$$0 \leq v_{B} - (-10x_{1} + 4x_{2}) \leq M(1 - y_{1})$$

$$0 \leq v_{B} - (6x_{1} + -4x_{2}) \leq M(1 - y_{2})$$

$$x_{1} + x_{2} = 1 \quad y_{1} + y_{2} = 1$$

$$x \geq 0, y \in \{0, 1\}$$

	b_1	b_2
a_1	(10,-10)	(-5,6)
a ₂	(-8,4)	(6, -4)

Leader

Follower

Multiple States

	b_1	b_2
a_1	$(\frac{1}{2}, \frac{1}{2})$ (10,-10)	(0, 1) $(-5, 6)$
<i>a</i> ₂	$(\frac{1}{4}, \frac{3}{4}) \tag{-8,4}$	(1, 0) $(6, -4)$

State s_1

	b_1	b_2
a_1	$(\frac{1}{2}, \frac{1}{2})$ (7,-5)	(0, 1) $(-1, 6)$
<i>a</i> ₂	$(\frac{1}{4}, \frac{3}{4})$ (-3,10)	(1, 0) $(2, -10)$

State s_2

Stochastic Games - Definition

$$\mathcal{G} = (\mathcal{S}, \mathcal{A}, \mathcal{B}, \mathcal{Q}, r_{A}, r_{B}, \beta_{A}, \beta_{B}, \tau)$$

$$s_0 \rightsquigarrow \begin{array}{c} \operatorname{Player} A \\ \operatorname{chooses} f_0 \end{array} \stackrel{\qquad \qquad \operatorname{Player} B}{\sim} \begin{array}{c} \operatorname{observes} f_0 \\ \operatorname{and} \operatorname{chooses} g_0 \end{array} \stackrel{\sim}{\underset{Q^{f_0 g_0}(s_1 \mid s_0)}{\longrightarrow}} \\ \stackrel{\qquad \qquad }{\sim} s_1 \rightsquigarrow \begin{array}{c} \operatorname{Player} A \\ \operatorname{chooses} f_1 \end{array} \stackrel{\qquad \qquad }{\sim} \begin{array}{c} \operatorname{Player} B \\ \operatorname{observes} f_1 \end{array} \stackrel{\sim}{\sim} s_2 \cdots \\ \operatorname{and} \operatorname{chooses} g_1 \end{array}$$

Stochastic Games - Definition

$$\mathcal{G} = (\mathcal{S}, \mathcal{A}, \mathcal{B}, \mathcal{Q}, r_{A}, r_{B}, \beta_{A}, \beta_{B}, \tau)$$

$$s_0 \rightsquigarrow \begin{array}{c} \text{Player } A \\ \text{chooses } f_0 \end{array} \stackrel{\text{Player } B}{\leadsto} \begin{array}{c} \text{observes } f_0 \\ \text{and chooses } g_0 \end{array} \stackrel{\text{}}{\underset{Q^{f_0 g_0}(s_1|s_0)}{\longleftrightarrow}}$$

$$Varphi = S_0 \rightsquigarrow S_1 \rightsquigarrow \begin{array}{c} \text{Player } A \\ \text{chooses } f_1 \end{array} \stackrel{\text{}}{\leadsto} \begin{array}{c} \text{Player } B \\ \text{observes } f_1 \end{array} \stackrel{\text{}}{\leadsto} S_2 \cdots$$

$$Varphi = S_0 \rightsquigarrow S_1 \rightsquigarrow S_1 \rightsquigarrow S_2 \cdots$$

$$Varphi = S_1 \rightsquigarrow S_1 \sim S_2 \cdots$$

$$Varphi = S_1 \sim S_1 \sim S_2 \cdots$$

$$Varphi = S_1 \sim S_1 \sim S_2 \cdots$$

$$Varphi = S_1 \sim S_2 \sim S_2 \sim S_2 \cdots$$

$$Varphi = S_1 \sim S_2 \sim S_2$$

Feedback Policies:

$$\pi=\pi(s,t) \ = \{f_1,\ldots,f_{ au}\}$$

Stationary Policies:

$$\pi = \pi(s)$$

$$= \{f, \ldots, f\}$$

Framework

General Objectives

- Existence and characterization of value functions.
- Existence of equilibrium strategies.
- Algorithms to compute them.

State of the Art

- For finite horizon, Stackelberg equilibrium in stochastic games via Dynamic programming.
- Mathematical programming approach to compute stationary values.

Framework

Contributions in Infinite horizon

- We define suitable Dynamic Programming operators.
- We used it to characterize value functions and to prove existence and unicity of stationary policies forming a Strong Stackelberg Equilibrium for a family of problems.
- We define Value Iteration and Policy Iteration for this family and prove its convergence.
- We prove via counterexample that this methodology is not always applicable for the general case.

Stackelberg equilibrium

$$(\pi, \gamma)$$
 —

Value Functions

$$egin{array}{lll} v_A^{\pi,\gamma}(s) & = & \mathbb{E}_s^{\pi,\gamma} \left[\sum_{t=0}^{ au} eta_A^t r_A^{A_t,B_t}(S_t)
ight] \ v_B^{\pi,\gamma}(s) & = & \mathbb{E}_s^{\pi,\gamma} \left[\sum_{t=0}^{ au} eta_B^t r_B^{A_t,B_t}(S_t)
ight] \end{array}$$

$$u_B^{\pi,\gamma}(s) = \mathbb{E}_s^{\pi,\gamma} \left[\sum_{t=0}^{\tau} \beta_B^t r_B^{A_t,B_t}(S_t) \right]$$

Stackelberg equilibrium

$$(\pi, \gamma)$$

Value Functions

$$egin{array}{lcl} v_A^{\pi,\gamma}(s) & = & \mathbb{E}_s^{\pi,\gamma} \left[\sum_{t=0}^{ au} eta_A^t r_A^{A_t,B_t}(S_t)
ight] \ v_B^{\pi,\gamma}(s) & = & \mathbb{E}_s^{\pi,\gamma} \left[\sum_{t=0}^{ au} eta_B^t r_B^{A_t,B_t}(S_t)
ight] \end{array}$$

Stackelberg Equilibrium

$$(\pi^*, \gamma^*)$$
 $v_A^{\pi^*, \gamma^*}(s) = \max_{\pi, \gamma^*} v_A^{\pi, \gamma^*}(s)$
 $\gamma^* \in \operatorname{argmax} v_B^{\pi, \gamma}(s)$

Best response functional:

$$g(f, v_B) = \arg \max_{b \in \mathcal{B}_s} \sum_{a \in \mathcal{A}_s} f(a) \left[r_B^{ab}(s) + \beta_B \sum_{z \in \mathcal{S}} Q^{ab}(z|s) v_B(z) \right]$$

Best response functional:

$$g(f, v_B) = \arg \max_{b \in \mathcal{B}_s} \sum_{a \in \mathcal{A}_s} f(a) \left[r_B^{ab}(s) + \beta_B \sum_{z \in \mathcal{S}} Q^{ab}(z|s) v_B(z) \right]$$

Myopic follower strategies (MFS):

$$g(f,v_B)=g(f)$$

Best response functional:

$$g(f, v_B) = \arg \max_{b \in \mathcal{B}_s} \sum_{a \in \mathcal{A}_s} f(a) \left[r_B^{ab}(s) + \beta_B \sum_{z \in \mathcal{S}} Q^{ab}(z|s) v_B(z) \right]$$

Myopic follower strategies (MFS):

$$g(f, v_B) = g(f)$$

- 2 important cases:
 - Myopic follower: $\beta_B = 0$
 - Leader-Controller Discounted Games: $Q^{ab}(z|s) = Q^a(z|s)$

- f a stationary policy.
- $T_{\Delta}^f: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$:

$$T_A^f(v_A)(s) = \sum_{a \in \mathcal{A}_s} f(a) \left[r_A^{ag(f)}(s) + \beta_A \sum_{z \in \mathcal{S}} Q^{ag(f)}(z|s) v_A(z) \right]$$

- f a stationary policy.
- $T_{\Delta}^f: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$:

$$T_A^f(v_A)(s) = \sum_{a \in \mathcal{A}_s} f(a) \left[r_A^{ag(f)}(s) + \beta_A \sum_{z \in \mathcal{S}} Q^{ag(f)}(z|s) v_A(z) \right]$$

Operator for the MFS case

$$T_A(v_A)(s) = \max_{f \in \mathbb{P}(A_s)} T_A^f(v_A)(s)$$
 (1)

Theorem 1.

- a) T_A^f , T_A are monotone.
- b) For any stationary strategy f, the operator T_A^f , is a contraction on $(\mathbb{R}^{|\mathcal{S}|}, ||\cdot||_{\infty})$ of modulus β_A .
- c) The operator T_A is a contraction on $(\mathbb{R}^{|S|}, ||\cdot||_{\infty})$, of modulus β_A .

Theorem 2.

There exists a equilibrium value function v_A^* and it is the unique solution of $v_A^* = T_A(v_A^*)$. Moreover, the pair f^* and $g(f^*)$ which maximizes the RHS of (1) are the equilibrium strategies.

Algorithm 1 Value function iteration: Infinite horizon

Require: $\varepsilon > 0$

1: Initialize with n=1, $v_A^0(s)=0$ for every $s\in\mathcal{S}$ and $v_A^1=T_A(v_A^0)$

2: **while**
$$||v_A^n - v_A^{n-1}||_{\infty} > \varepsilon$$
 do 3: Compute v_A^{n+1} by

$$v_A^{n+1}(s) = T_A(v_A^n)(s) .$$

Finding f^* and $g^*(f)$ at stage n.

- 4: n := n + 1
- 5: end while
- 6: **return** Stationary Stackelberg policies $\pi^* = \{f^*, \ldots\}$ and $\gamma^* = \{f^*, \ldots\}$ $\{g^*,\ldots\}$

Theorem 3.

The sequence of value functions v_A^n converges to v_A^* . Furthermore, v_A^* is the fixed point of T_A with the following bound

$$||v_A^* - v_A^n||_{\infty} \leq \frac{||r_A||_{\infty} \beta_A^n}{1 - \beta_A}.$$

Policy Iteration - MFS

- Begin with f^0 and $g(f^0)$ (e.g. $f^0 = \frac{1}{|\mathcal{A}|}$).
- Compute: $u_{A,0} = T_A^{f_0}(u_{A,0})$
- Find f_1 :

$$T_A^{f_1}(u_{A,0}) = T_A(u_{A,0})$$

- Compute: $u_{A,1} = T_A^{f_1}(u_{A,1})$
- ...
- Repeat until convergence.

Policy Iteration - MFS

- Begin with f^0 and $g(f^0)$ (e.g. $f^0 = \frac{1}{|\mathcal{A}|}$).
- Compute: $u_{A,0} = T_A^{f_0}(u_{A,0})$
- Find f_1 :

$$T_A^{f_1}(u_{A,0}) = T_A(u_{A,0})$$

- Compute: $u_{A,1} = T_A^{f_1}(u_{A,1})$
- ...
- Repeat until convergence.

Theorem 4.

The sequence of functions $u_{A,n}$ verifies $u_{A,n}\uparrow v_A^*$. Even more, if for any $n\in\mathbb{N}$, $u_{A,n}=u_{A,n+1}$, then it is true that $u_{A,n}=v_A^*$.

Policy Iteration - MFS

Algorithm 2 Policy Iteration (PI)

- 1: Choose a stationary Stackelberg pair $(f_0, g(f_0))$.
- 2: while $||u_{A,n} u_{A,n+1}|| > \varepsilon$ do
- 3: Evaluation Phase: Find $u_{A,n}$ fixed point of the operator $T_A^{f_n}$.
- 4: Improvement Phase: Find a strategy f_{n+1} such that

$$T_A^{f_{n+1}}(u_{A,n}) = T_A(u_{A,n}).$$

- 5: n := n+1
- 6: end while
- 7: **return** Stationary Stackelberg policies $\pi^* = \{f^*, \ldots\}$ and $\gamma^* = \{g(f^*), \ldots\}$

Computational Results - MFS

Computational Results - MFS

Computational Results - MFS

General Case

- f and g fixed stationary policies
- $\bullet \ T_i^{f,g}: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}, \ i \in \{A, B\}$

$$T_i^{f,g}(v_i)(s) = \sum_{a \in \mathcal{A}_s} f(a) \sum_{b \in \mathcal{B}_s} g(b) \left[r_i^{ab}(s) + \beta_i \sum_{z \in \mathcal{S}} Q^{ab}(z|s) v_i(z) \right]$$

Operator for the General case

$$T: \mathbb{R}^{|\mathcal{S}|} imes \mathbb{R}^{|\mathcal{S}|} o \mathbb{R}^{|\mathcal{S}|} imes \mathbb{R}^{|\mathcal{S}|}$$

$$(T(v_A, v_B))(s) = \left(\max_{f \in \mathbb{P}(A_s), \ T_A^{f,g(f,v_B)}(v_A)(s), \ T_B^{f^*,g(f^*,v_B)}(v_B)(s)\right)$$

Algorithm

Algorithm 3 Value Iteration (VI): Finite horizon for the general case

- 1: Initialize with $v_A^{\tau+1}(s) = v_B^{\tau+1}(s) = 0$ for every $s \in \mathcal{S}$
- 2: **for** $t = \tau, \dots, 0$, and for every $s \in \mathcal{S}$ **do**
- 3: Solve

$$\left(v_{\mathcal{A}}^{t}(s),v_{\mathcal{B}}^{t}(s)\right)=T(v_{\mathcal{A}}^{t+1},v_{\mathcal{B}}^{t+1})(s)\quad orall s\in \mathcal{S}$$

Finding f_t^* and g_t^* SSE strategies at stage t.

- 4: end for
- 5: **return** Stackelberg policies $\pi^* = \{f_0^*, \dots, f_{\tau}^*\}$ and $\gamma^* = \{g_0^*, \dots, g_{\tau}^*\}$

Example

	b_1	b_2
a_1	$(\frac{1}{2}, \frac{1}{2})$ (10,-10)	(0, 1) $(-5, 6)$
<i>a</i> ₂	$(\frac{1}{4}, \frac{3}{4}) \tag{-8,4}$	(1, 0) $(6, -4)$

State s_1

	b_1	b_2
a_1	$(\frac{1}{2}, \frac{1}{2})$ (7,-5)	(0, 1) $(-1, 6)$
a ₂	$(\frac{1}{4}, \frac{3}{4})$ (-3,10)	(1, 0) $(2, -10)$

State s₂

$$\beta_A = \beta_B = 0.9$$

Example

Counterexample

Counterexample

Computational Results - General Instances

Algorithm 4 VI modified: Infinite horizon for the general case

```
1: Initialize with n=0, v_A^0(s)=v_B^0(s)=0 for every s\in\mathcal{S}.
2: for n = 1, \dots, MAX\_IT do
        Find the pair (v_A^n, v_B^n) by
                                     (v_A^n, v_B^n)(s) = T(v_A^{n-1}, v_B^{n-1})(s).
        Finding f^* and g^* SSE strategies at stage n-1.
       if (v_A^n, v_B^n) = (v_A^{n-1}, v_B^{n-1}) then
           return (v_A^n, v_B^n) fixed point of T.
6:
        end if
       if ||(v_A^n, v_B^n) - (v_A^{n-1}, v_B^{n-1})|| > 2\frac{\beta^{n-1}}{1-\beta}||(r_A, r_B)|| then
8:
           return UNDEFINED 1.
9:
        end if
10: end for
11: return UNDEFINED 2.
```

Security Games

$$r_A^{ab}(s) = egin{cases} R_A(b) > 0 & ext{if } b = a \ P_A(b) < 0 & ext{otherwise} \end{cases}$$

$$r_B^{ab}(s) = egin{cases} P_B(b) < 0 & ext{if } b = a \ R_B(b) > 0 & ext{otherwise} \end{cases}$$

- Non pure strategies seems to be optimal for the leader.
- Computationally all instances in Security games VI converges with the geometric bound.

Security Games

$$r_A^{ab}(s) = egin{cases} R_A(b) > 0 & ext{if } b = a \ P_A(b) < 0 & ext{otherwise} \end{cases}$$

$$r_B^{ab}(s) = egin{cases} P_B(b) < 0 & ext{if } b = a \ R_B(b) > 0 & ext{otherwise} \end{cases}$$

- Non pure strategies seems to be optimal for the leader.
- Computationally all instances in Security games VI converges with the geometric bound.

Conjecture

For every Security game with this payoff structure, the operator T is β contractive, with $\beta = \max\{\beta_A, \beta_B\}$.

Computational Results - General Instances

Figure: Performance of VI and PI in general random instances generated.

Computational Results - General Instances

Figure: Performance of VI and PI in general random instances generated.

Computational Results - General Instances

Figure: Performance of VI and PI in general random instances generated.

Computational Results - % UNDEFINED.

Figure: Percentage of instances where VI returns UNDEFINED.

Computational Results - % UNDEFINED.

Figure: Percentage of instances where VI returns UNDEFINED.

Computational Results - % UNDEFINED.

Figure: Percentage of instances where VI returns UNDEFINED.

Conclusions

- We define suitable Dynamic Programming operators.
- We used it to characterize value functions and to prove existence and unicity of stationary policies forming a Strong Stackelberg Equilibrium for a family of problems.
- We define Value Iteration and Policy Iteration for this family and prove its convergence.
- We prove via counterexample that this methodology is not always applicable for the general case.
- We study security games and we conjecture that operators this type of games are contractive.

Future Work

- We aim to prove the convergence of VI procedure for security games.
- Rolling horizon techniques.
- Applicability Approximate Dynamic Programming techniques.
- To formalize and understand the behavior of Cyclic policies forming strong Stackelberg equilibrium.

Thank you!

Víctor Bucarey López vbucarey@ing.uchile.cl

FCEIA - UNR - Rosario November 2nd, 2017

References

- Tansu Alpcan and Tamer Basar. Stochastic security games, page 74-97. Cambridge. University Press, 2010.
- 2 Tamer Basar, Geert Jan Olsder. Dynamic noncooperative game theory, volume 200. SIAM, 1995.
- Francesco Maria Delle Fave, Albert Xin Jiang, Zhengyu Yin, Chao Zhang, Milind Tambe, Sarit Kraus, and John P Sullivan. Game-theoretic patrolling with dynamic execution uncertainty and a case study on a real transit system. Journal of Artificial Intelligence Research, 2014.
- Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer Science & Business Media, 2012.
- Yevgeniy Vorobeychik, Bo An, Milind Tambe, and Satinder Singh. Computing solutions in infinite-horizon discounted adversarial patrolling games. In Proc. 24th International Conference on Automated Planning and Scheduling (ICAPS 2014)(June 2014), 2014.
- Yevgeniy Vorobeychik and Satinder Singh. Computing Stackelberg equilibria in discounted stochastic games (corrected version). 2012

Counterexample

	b_1	b_2
a_1	(1, 0) (1,-1)	(0,1) $(0,1)$
a ₂	(0, 1)	(0, 1) $(-1, -1)$

State s₁

	b_1	b_2
a_1	(0, 1)	(1, 0) (0,1)
a ₂	(1, 0)	(0, 1) $(1, -1)$

State s₂

Table: Transition matrix and payoffs for each player in the numerical example 2.

