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Strong Stackelberg Equilibrium

@ Leader commits to a payoff maximizing strategy.

o Follower best responds.

@ Follower breaks ties in favor of the leader.




Example

by b,
a; | (10,-10) | (-5,6)
ar (—8,4) (6, —4)

MIP formulation

max va
va < 10x; + —8x> + M(]_ = y1)
va < —5x1 + 6x2 + M(1 — y»)

0< vg—(—10x1 +4x2) < M(1 — y1)
0< v —(6x1+ —4x) < M(1 - y,)
xx+x=1 yi+y=1
x>0,ye{0,1}




by b>
a1 | (10,-10) | (—5,6)
2 | (-84) | (6,-4)

Leader Follower



Multiple States

bl b2
(3> 2) (0,1)
al e (10,-10) (—5,6)
ar (%’ %) (17 0)
(_814) (67 _4)
State 51
bl bz
17 1 (07 1)
ai (2 2) (7’_5) (_1’6)
(7 3) (1,0)
2 (-3,10) (2,-10)

State s




Stochastic Games - Definition

g = (8744787 Q, ra, rBaﬁAa/BBvT)

Player B
Player A Y
S0 observes f, ~
chooses fj ~~
and chooses gp Q00 (s1]50)
Player B
Player A Y
s S A observes f; ~ Sy e
chooses f;

and chooses g3



Stochastic Games - Definition

g = (8744; B, Q, ra, rBaBAa/BBaT)

Player A Player B
S0 observes f, ~
chooses fj ~~
and chooses gp Q00 (s1]50)
Player A Player B
s S A observes f; ~ Sy e
chooses f;
and chooses g3
Feedback Policies: Stationary Policies:
m =7(s,t) m = 7(s)

={f,....£} ={f,....f}




Framework

General Objectives

@ Existence and characterization of value functions.
@ Existence of equilibrium strategies.

@ Algorithms to compute them.

\.

State of the Art

@ For finite horizon, Stackelberg equilibrium in stochastic games
via Dynamic programming.

@ Mathematical programming approach to compute stationary
values.

\.




Framework

Contributions in Infinite horizon

@ We define suitable Dynamic Programming operators.

@ We used it to characterize value functions and to prove
existence and unicity of stationary policies forming a Strong
Stackelberg Equilibrium for a family of problems.

@ We define Value Iteration and Policy lteration for this family
and prove its convergence.

@ We prove via counterexample that this methodology is not
always applicable for the general case.




Stackelberg equilibrium

Value Functions

(m,7) — @m)—lwﬂmeﬁﬁﬂ
t=0
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Stackelberg equilibrium

Value Functions

EDY [Z ﬂﬁ\ff“s‘(&)]
t=0

va 7 (s) ETY [Zﬂéré“B‘(Sr)]
t=0

Stackelberg Equilibrium
(™, 7")

VZ* A (S) — ﬂ_m,ayi( VZ,'}/* (S)

(m,7) — va(s)

v € argmaxvg(s)




Myopic Follower Strategies

Best response functional:

g(f,vg) = arg max Z f(a +ﬁBZQab(Z| )ve(2)
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Myopic Follower Strategies

Best response functional:

g(f,vg) = arg max Z f(a) | rab(s) + Bs Z Q%*(z|s)vs(2)

acAs zeS

Myopic follower strategies (MFS):

g(fu VB) = g(f)

2 important cases:
e Myopic follower: g =0

o Leader-Controller Discounted Games: Q?°(z|s) = Q3(z|s)




Myopic Follower Strategies

e f a stationary policy.
o T :RISI - RISI:

= ) f(a)

acAs

ag(f

)+ 84> Q% (z|s)va(2)
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Myopic Follower Strategies

e f a stationary policy.
o T :RISI - RISI:

Z f(a ag(f )+ Ba Z Q%) (z|s)va(z)

acAs zeS

Operator for the MFS case

Ta(va)(s) = LR Ta(va)(s) (1)




Myopic Follower Strategies

Theorem 1.
a) T4, Ta are monotone.
b) For any stationary strategy f, the operator T4, is a contraction on

(RISI || - [|oo) of modulus fBa.
c) The operator T, is a contraction on (RIS! || - ||~), of modulus Ba.
Theorem 2.

There exists a equilibrium value function v and it is the unique solution
of vi = Ta(vy). Moreover, the pair f* and g(f*) which maximizes the
RHS of (1) are the equilibrium strategies.



Myopic Follower Strategies

Algorithm 1 Value function iteration: Infinite horizon

Require: € >0
1: Initialize with n =1, v(s) = 0 for every s € S and v} = Ta(v3)
2: while ||v] — vi || > ¢ do
3:  Compute VZH by
vati(s) = Ta(vA)(s) -

Finding f* and g*(f) at stage n.
4 n:=n+1
end while
6: return Stationary Stackelberg policies 7* = {f* ...} and 7*

{g",..-}

a




Myopic Follower Strategies

Theorem 3.

The sequence of value functions v converges to v,. Furthermore, v} is
the fixed point of T4 with the following bound

Iralloo B2
* _..n < WANCe FA
[va = vallos < 1— G4



Policy Iteration - MFS

Begin with f° and g(f°) (e.g. f° = ).

Compute: upp = TE(UA’O)
Find fi:

TE(”A,O) = Ta(uap)

o Compute: uaq = Tzl(uAJ)
° .
@ Repeat until convergence.



Policy Iteration - MFS

Begin with f° and g(f°) (e.g. f° = ).

Compute: upo = T/ZO(UAJ))
Find fi:

TE(”A,O) = Ta(uap)

Compute: up1 = Tzl(uAJ)

Repeat until convergence.

Theorem 4.

The sequence of functions uy , verifies us , T v . Even more, if for any
n €N, uan = Uanps1, then it is true that ua, = v; .



Policy Iteration - MFS

Algorithm 2 Policy Iteration (PI)

Choose a stationary Stackelberg pair (f, g()).

while ||ua, — Ua pt1]| > € do
Evaluation Phase: Find uga , fixed point of the operator TAf".
Improvement Phase: Find a strategy f,;1 such that

L

T (uan) = Ta(uan) -

5. n=n+l

6: end while

7: return Stationary Stackelberg policies 7* = {f*,...} and v* = {g(f*),...}




Computational Results - MFS

| »— Value lteration = Policiy Iteration
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Computational Results - MFS

| »— Value lteration = Policiy Iteration
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Computational Results - MFS

»— Value lteration = Policiy Iteration
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General Case

@ f and g fixed stationary policies

o Tif.,g RIS 5 RISI i€ {A, B}

e = 3 F6) S e [rf%s)+a,-zoab<z|s>v,-(z>]

acAs beBs zeS

Operator for the General case

T : RISI x RISI - RISI x RISI

(T(va,ve))(s) = (feq;(a;) TAE) (va)(s). Té”"g“*’”?’(vB)(s))




Algorithm

Algorithm 3 Value Iteration (VI): Finite horizon for the general case

1: Initialize with VTH( )=viT(s)=0foreveryse S
: for t =7,...,0, and for every s € S do
Solve

w N

(vi(s), vi(s)) = T(viL, vE)(s) VseS

Finding f,* and g;° SSE strategies at stage t.
4: end for
5: return Stackelberg policies 7* = {f;,...,f*} and v* = {gg,.... &’}




Example

bl bQ
(3 3) (0,1)
o e (10,-10) (—5,6)
5 | G0 7) (1,0)
(-8,4) (6,—4)
State s;
bl b2
ECE)) (0. 1)
(7.-5) (-1,6)
TG @0
2 (-3,10) (2,-10)
State sp

fa=ps =09




Example

— (0,0) = (-50.0, -50.0)
e—e (100.0, 100.0) »— (50.0, 50.0)
v—v (-100.0, -100.0)

100

50

Value Function
o

=50

—-100

0 10 20 30 40 50 60
Stages



Counterexample

»—x Leader ~— Follower »—x Leader ~— Follower
0.
14 08
.7
12 o

06
10 <
s s

g Zos
Zos H

H o4
3 3
S o6 =

03

.4

° 02

02 01

0.0 0.0

10 20 30 20 5 10 20 30 20 5
Stages Stages

State s; State s



Counterexample

Iteration 14

State s1

State so

Leader

08 1 0277 04 06 08
o} = 0552
-1

Follower

1

9 04 06 08 1
£ = 0633
-1

Leader Follower

Iteration 15

State s1

02714

State s

Follower

06 o8| 02" o1 06 05 1
! o 0692
-1

Leader Follower




Computational Results - General Instances

Algorithm 4 VI modified: Infinite horizon for the general case

1: Initialize with n = 0, v3(s) = v2(s) = 0 for every s € S.
2: forn=1,--- , MAX_IT do
3: Find the pair (v4, vg) by

(VA,vB)(s) = T(va ', va 1)(s) -

Finding f* and g* SSE strategies at stage n — 1.

4 if (vi,vE) = (vi ', vag ') then

5: return (vg,vg) fixed point of T.

6: end if )

7oA [[(vA v8) — (v Ve I > 285 [ (ra, re)| then
8: return UNDEFINED 1.

9: end if

10: end for

11: return UNDEFINED 2.




Security Games

" Ra(b) >0 ifb=a > Ps(b) <0 ifb=a
ra(s) = . rg (s) = .
Pa(b) < 0 otherwise Rg(b) > 0 otherwise
@ Non pure strategies seems to be optimal for the leader.

Computationally all instances in Security games VI converges with
the geometric bound.



Security Games

() = Ra(b) >0 ifb=a () = Ps(b) <0 ifb=a
A Pa(b) < 0 otherwise E Re(b) >0 otherwise

@ Non pure strategies seems to be optimal for the leader.

o Computationally all instances in Security games VI converges with
the geometric bound.

For every Security game with this payoff structure, the operator T
is 3 contractive, with 5 = max{fSa, 5}




Computational Results - General Instances
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Figure: Performance of VI and PI in general random instances generated.



Computational Results - General Instances
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Figure: Performance of VI and PI in general random instances generated.



Computational Results - General Instances

»—x Value lteration ~—— Policiy Iteration
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Figure: Performance of VI and PI in general random instances generated.



Computational Results - % UNDEFINED.

Instances not Solved %
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Figure: Percentage of instances where VI returns UNDEFINED.



Computational Results - % UNDEFINED.
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Figure: Percentage of instances where VI returns UNDEFINED.



Computational Results - % UNDEFINED.
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Figure: Percentage of instances where VI returns UNDEFINED.



Conclusions

@ We define suitable Dynamic Programming operators.

@ We used it to characterize value functions and to prove existence and
unicity of stationary policies forming a Strong Stackelberg Equilibrium
for a family of problems.

@ We define Value lteration and Policy lteration for this family and
prove its convergence.

@ We prove via counterexample that this methodology is not always
applicable for the general case.

@ We study security games and we conjecture that operators this type
of games are contractive.



Future Work

@ We aim to prove the convergence of VI procedure for security games.
@ Rolling horizon techniques.
@ Applicability Approximate Dynamic Programming techniques.

@ To formalize and understand the behavior of Cyclic policies forming
strong Stackelberg equilibrium.



Thank you!

Victor Bucarey Lépez
vbucarey@ing.uchile.cl

FCEIA - UNR - Rosario
November 2nd, 2017




References

@ Tansu - Alpcan and Tamer Basar. Stochastic security games, page 74-97. Cambridge. University
Press, 2010.

@ Tamer Basar, Geert Jan Olsder. Dynamic noncooperative game theory, volume 200. SIAM, 1995.

© Francesco Maria Delle Fave, Albert Xin Jiang, Zhengyu Yin, Chao Zhang, Milind Tambe, Sarit
Kraus, and John P Sullivan. Game-theoretic patrolling with dynamic execution uncertainty and a
case study on a real transit system. Journal of Artificial Intelligence Research, 2014.

@ Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer Science &
Business Media, 2012.

@ Yevgeniy Vorobeychik, Bo An, Milind Tambe, and Satinder Singh. Computing solutions in
infinite-horizon discounted adversarial patrolling games. In Proc. 24th International Conference
on Automated Planning and Scheduling (ICAPS 2014)(June 2014), 2014.

@ Yevgeniy Vorobeychik and Satinder Singh. Computing Stackelberg equilibria in discounted
stochastic games (corrected version). 2012



Counterexample

by by
(1, 0) (0, 1)
a (1-1) (0,1)
(0, 1) (0, 1)
a (-1,1) (-1,-1)
State s;
by b>
(0, 1) (1, 0)
a (-1,0) (0,1)
(1, 0) (0, 1)
a2 (0,1) (1,-1)
State s

Table: Transition matrix and payoffs for each player in the numerical example 2.
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