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Abstract—In this work we face the problem of finding strong
Stackelberg equilibrium in stochastic games. We study a familiy
of stochastic games where equilibrium in stationary policies
exist and prove the convergence of value iteration and policy
iteration procedures. Preliminary computational results evaluate
the performance of these algorithms for stochastic games in the
form of security games. Finally, we show that is not always
possible to achieve strong Stackelberg equilibrium via dynamic
programming.

I. INTRODUCTION

In this work we face the problem of computing a strong
Stackelberg equilibrium (SSE) in a stochastic game (SG).
Given a set of states we model a two player perfect information
dynamic where one of them, called Leader or player A, ob-
serves the current state and decides, possible up to probability
distribution f , between a set of available actions. Then other
player, called Follower or player B, observes the strategy of
player A and plays his best response noted by g. We represent
a two-person stochastic discrete game G by

G = (S,A,B, Q, rA, rB , βA, βB , τ) .

where S represents the states of the games, A and B repre-
sents space of actions of both players. We denote As and
Bs the available set of actions of both players in state s.
Q = Qab(z|s) represents the transition probability of going
from a state s to a state z given the actions a and b were
performed by players A and B respectively. rabA (s), rabB (s)
represents the one-step rewards functions depending on the
actual state, and the actions performed by the players. βA and
βB are the discount factors for both players. τ represents the
number of periods in the dynamic.

Stochastic games were first introduced by Shapley [1] who
also gives the first algorithm to find Nash Equilibrium in zero-
sum SG based on a dynamic programming algorithm. SG have
been used to model interaction in economics [2], computer
networks [3], and security [4], among others applications.
Feedback policies are policies depending on the actual state
s and time epoch t. Stationary policies can be defined as
feedback policies that do not depend on the time step. In our
setting, players aim to maximize their expected discounted
sum of payoffs from 0 until τ considering feedback and

stationary polcies. To the best of our knowledge there is no
prior work on efficient algorithms to find stationary strategies
in Stackelberg games for τ → +∞ when they exist.

In the security applications that motivate this work, such
as patrolling the streets to prevent crime, the decision of
where to patrol next should not depend on the history of
previous patrolling actions and a time independent policy is
easy to communicate to real world security agents. Therefore,
the focus of this work is computing Stackelberg equilibria in
feedback or Markovian policies.

A complete review about Nash equilibria computation and
Learning in SG can be found in [5]. In [6] authors study
the relationship between Stackelberg strategies and correlated
equilibrium in SG. They also shows that it is NP-hard to find
Stackelberg equilibrium in SG. In contrast to MDP settings,
Stackelberg equilibrium in stationary policies can be arbitrary
suboptimal as is showed in [7] providing a Mixed integer
non linear program to compute a SSE in general SG when
players are restricted to stationary policies. They extend this
formulation in [8] to policies that depends on history of
bounded length.

Some applications of Stackelberg equilibrium in SG are the
following:

• The problem of coordinate a group of robots for planet
exploration is presented in [9]. They model it as a
multi-objective SG and the solution concept used is the
Stackelberg equilibrium.

• Adversarial patrolling games [10] and robotic patrolling
games where a robot has to detect an intruder [11].

• Optimal policies to detect fare evasion under execution
uncertainty is presented in [4] as solutions of Bayesian
Stackelberg SG.

II. ALGORITHMS AND MAIN RESULTS

A. Myopic follower strategies case ((MFS))

In this section we discuss algorithms for the case where
the value function of the follower vB do not affect in its



best response. Let define the functional g of best response
as follows:

g(f, vB) = argmax
b∈B

∑
a∈As

f(a)

[
ra,bB (s) + βB

∑
z∈S

Qa,b(z|s)vB(z)

]
.

(1)
Here we follow the convention that the argmax is unique

because in case of indifference between options, the follower
select the one that favors the leader. In case the leader is also
indifferent, then, in order for g(f, vB) to be well defined, the
follower selects the action with the lowest index. Note that
since g(f, vB) optimizes (1), g(f, vB) is at least as good as
any mixed strategy.

We say that a stochastic game G has Myopic follower
strategies (MFS) if at every step of the game the functional g
is independent of vB , that is g(f, vB) = g(f). In particular,
we distinguish two important cases with MFS:
• Myopic follower: We define a game as having a myopic

follower if βB = 0. Note that in this case the follower
at any step of the game does not take into account the
future rewards, but only the instantaneous rewards.

• Leader-Controller Discounted Games: This case is a
particular case of the Single-controller discounted game
where the controller is the leader. In other words, the
transition law is in the form Qab(z|s) = Qa(z|s).

B. Stackelberg operator and Value function iteration
Let F(S) be the set of all bounded functions of the space

state S into R. Given a stochastic game G and a strategy f ,
we define the operator T f

A : F(S) → F(S) by the following
expression:

T f
A(vA)(s) =

∑
a∈As

f(a)

[
r
ag(f)
A (s) + βA

∑
z∈S

Qag(f)(z|s)vA(z)

]
.

(2)
Now we define the Stackelberg operator, T f

A : F(S)→ F(S),
for (MFS) case as follows:

TA(vA)(s) = max
f∈P(As)

T f
A(vA)(s). (3)

This operator computes in every state the strong Stackelberg
equilibrium value of being in state s for each s ∈ S and the
future expected rewards are given by function vA. Given the
value function vA and a fixed state s ∈ S the operator TA
can be computed with a mixed integer formulation or with a
multiple LPs algorithm (see [12]).

In [13, Theorem 7.4] it is shown that when the algorithm
for finite time horizon ends, it returns both the value for our
game and a pair of Stackelberg feedback policies (π∗, γ∗) for
the τ -finite horizon game. We propose Algorithm 1 in order to
compute SSE in stationary policies, showing its convergence
by proving Theorems II.1 and II.2.

Theorem II.1. Let G be a SG with MFS, then
a) For any stationary strategy f , the operator T f

A :
F(S) → F(S), defined in (2) is a contraction on
(F(S), || · ||∞) of modulus βA.

Algorithm 1 Value function iteration: Infinite horizon
Require: ε > 0

1: Initialize with n = 1, v0A(s) = 0 for every s ∈ S and
v1A = TA(v

0
A)

2: while ||vnA − vn−1A ||∞ > ε do
3: Compute vn+1

A by

vn+1
A (s) = TA(v

n
A)(s) .

Finding f∗ and g∗(f) SSE strategies at stage n.
4: n:=n+1
5: end while
6: return Stationary Stackelberg policies π∗ = {f∗, . . .}

and γ∗ = {g∗, . . .}

b) The operator TA defined in (3) is a contraction on
(F(S), || · ||∞), of modulus βA.

Theorem II.2. Let G be a SG with MSF. Then the sequence
of value functions vnA converges to v∗A. Furthermore, v∗A is the
fixed point of TA, and therefore, for any n ∈ N,

||v∗A − vnA|| ≤
||rA||∞ βn

A

1− βA
.

Given that the best response of the follower in this games are
independent of the future expected value vB ignore its behav-
ior. The stationary pair of policies (f∗, g(f∗)) is guaranteed
to exist and they are enough to compute the value function for
SG with MFS as the fixed point:

v∗B =
∑
a∈A

f∗ar
a,g(f∗)
B + βB

∑
z∈S

Qag(f∗)(z|s)v∗B .

C. Policy Iteration

The Policy Iteration (PI) algorithm directly iterates in the
policy space. This algorithm starts with an arbitrary policy
f0 and then finds the optimal infinite discounted horizon
values, taking into account the optimal response g(f). These
values are then used to compute new policies. These two
steps of the algorithm can be defined as Evaluation Phase and
Computation Phase. This algorithm is described in Algorithm
2. We show convergence of PI by proving Lemma II.3 and
Theorem II.4 for SG with MFS.

Algorithm 2 Policy Iteration
1: Choose a stationary Stackelberg pair (f0, g(f0)).
2: while ||uA,n − uA,n+1|| > ε do
3: Evaluation phase: Find uA,n fixed point of the operator

T fn
A .

4: Improvement phase: Find a strategy fn+1 such that

T
fn+1

A (uA,n) = TA(uA,n) .

5: n:= n+1
6: end while
7: return Stationary Stackelberg policies π∗ = {f∗, . . .}

and γ∗ = {g(f∗), . . .}



Lemma II.3. If a value function vA satisfies vA ≤ T f
A(vA) ,

then vA ≤ vfA, where vfA is the unique fixed point of T f
A(vA).

Theorem II.4. The sequence of functions uA,n verifies uA,n ↑
v∗A . Even more, if for any n ∈ N, uA,n = uA,n+1, then the
following it is true that uA,n = v∗A .

The results exposed in this section strongly rely on the fact
that g(f, vB) is independent on vB . All the results exposed in
this section may fail in the general case.

D. General Case

In general instances the main results for the (MFS) case
do not hold. Operator TA is not sufficient to describe the
whole behavior of the values of both players, in particular, vB
has influence in best response in the response of leader and
follower. Given a pair of stationary policies f, g, we define the
following operators:

T f,g
A (vA)(s) =

∑
a∈As
b∈Bs

f(a)g(b)
∑
z∈S

Qa,b(z|s)
[
ra,bA (s) + βAvA(z)

]
,

(4)

T f,g
B (vB)(s) =

∑
a∈As
b∈Bs

f(a)g(b)
∑
z∈S

Qa,b(z|s)
[
ra,bB (s) + βBvB(z)

]
.

(5)

Using that we can define the Stackelberg operator for the
general case as:

(T (vA, vB))(s) =

(
max

f∈P(As),
T

f,g(f,vB)
A (vA)(s),

T
f∗,g(f∗,vB)
B (vB)(s)

)
. (6)

We show via a counterexample that this operator is not con-
tractive in general. Anyway we computationally tested that for
a special type of stochastic games, called security games, the
VI algorithm converges to the stationary equilibrium policies
and this operator is contractive. We adapt the VI procedure to
detect if the algorithm will not converge.

III. COMPUTATIONAL RESULTS

Our computational tests give us for SG with MFS that PI
and VI outperform any mathematical programming formula-
tion in literature. Further, PI scale-up better than VI as the
instance grows (see Figure 1).

IV. CONCLUSIONS AND FUTURE WORK

In this work we adapt dynamic programming based algo-
rithms to find stationary policies forming SSE. We first show
a family of SG where this type of equilibrium exists and is
achievable via dynamic programming. In this case, we show
that value function iteration and policy iteration converges. For
the general case it may not possible. Our computational test
show that PI outperforms VI is faster in MFS instances. Our
experiments, also shows a special family of instances called
Security Games that VI always converge. We do not provide
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Fig. 1. Performance of PI against VI.

a formal proof to the conjecture of T associated to a Security
Game is contractive.

In future work we aim to extend the analysis to other fami-
lies of stochastic games where the operator T is contractive. A
second research line is to analyze the impact of approximate
dynamic programming to calculate this type of equilibrium.
The third line is to formalize the existence of cyclic policies
that forms SSE.
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