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Opportunity for Ridesharing

» According to the U.S. Department of Transportation
more than 10% of the GDP is related to
transportation activity

» The 2015 Urban Mobility report estimates the cost of
congestion in the US to be on the order of $160
billion and 7 billion hours in delayed time

» 87% of all trips occur in a personal vehicle
38% of all trips are single occupant (NHTS)



Project Overview

» New information technologies => a wealth of real time and
dynamic data about traffic conditions

» GPS systems both in vehicles/phones
» Interconnected data systems
» on-board computers

» Engineering Tomorrow’s Transportation Market:

» distributed system transportation market where consumers and
providers of transportation negotiate route and prices in real-time.

» Anyone with a car could offer to sell their unused vehicle
capacity to other riders

Make every car a taxi
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Basic Ridesharing Definitions

» Ridesharing Is a joint-trip of more than two participants
that share a vehicle and requires coordination with
respect to itineraries and time

» Unorganized ridesharing
» Family, colleagues, neighbors
» Hitchhiking
» Slugging

» Organized ridesharing
» Matching of driver and rider,
requires

Service operators
Matching agencies

» Cost-sharing systems (Carma, Flinc)
» Revenue maximizing systems/e-hailing (Uber, Sidecar, Lyft, etc)
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Ridesharing Challenges and Research

» High-dimensional Matching
» Trust and Reputation

» Mechanism Design

» Cost of Ridesharing

» Institutional Design
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Ridesharing Challenges and Research

» Mechanism Design
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Our Setting

. Share the ride costs fairly and without any
subsidies.

- Make sure passengers have no reason to drop out
after accepting their fare quote.

- Motivate passengers to submit requests early. This
allows the system to maximize serviced
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Example
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Example
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Desirable Properties
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Desirable Properties

. Budget balance
The total cost is shared by all serviced passengers.

. Immediate response
The passengers’ costs are monotonically non-
Increasing (in time).

. Online fairness
The costs per distance unit are monotonically
non-decreasing (in passengers’ arrival order).

» Truthfulness
The best strategy of every passenger is to declare
trip as early as possible

. Rationality
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- Proportional Online Cost-Sharing is a mechanism
that provides low fare quotes to passengers directly
after they submit ride requests and calculates their
actual fares directly before their rides.

» POCS calculates shared-costs by:
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» POCS Is a mix of

» marginal cost-sharing
(with respect to coalitions)

» proportional cost-sharing
(with respect to passengers within a
coalition)
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Example
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Example
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POCS’s Properties

v" Budget balance

v Immediate response

v Online fairness

k=1 k=2 k=3
Distance 2 2 4
Total Cost 20 60 60
Marginal Cost | 20 40 0
POCS 15 15 30

11/2/2017



POCS’s Uniqueness

» POCS Is a mechanism that satisfies these properties
and always minimizes the fare quotes of newly
arriving passengers.
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Simulation Setting

» 11 x 11 grid city
» 10,000 runs

» 25 identical shuttles
» Initial location: a depot
» Capacity: 10 seats
» Operating hour: dawn to dusk
» Identical speed and gas mileage

» 100 non-identical passengers
» Random OD-pair

Sequential request submission

» Random drop-off time window

» Random fare limit

v
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Simulation Results
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Simulation Results

» Benefit to delay ride request?

Scenario | Number Time Number || Situation No Situation Worsens
Shuttles | Window | Runs Improves | Change | Not Drop.Out | Drop.Out
1 2 3.0 33,116 11% 32% 24% 33 %
2 2 4.0 37,047 15% 31% 39% 15 %
3 10 3.0 36,975 16% 31% 51% 2 %
4 10 4.0 37.911 17% 29% 51% 3%
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Conclusions

» POCS mechanism induces

» online fairness, immediate response, individual rationality,
budget balance and ex-post incentive compatibility

» How to adapt if computing travel cost approximately

» Dynamic POCS
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Ridesharing Challenges and Research

» Cost of Ridesharing

» Planning
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Model Formulation
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Model 1 Formulation

» Elastic demand TAP with ridesharing prices
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