Dynamic Ridesharing

M.M. Dessouky, University of Southern California F. Ordóñez, Universidad de Chile Engineering Tomorrow's Transportation Market

DOT-FHWA

M.M. Dessouky, S. Koenig, F. Ordóñez

M. Furuhata, X. Wang, H. Xu, K. Daniel, L. Cohen

Opportunity for Ridesharing

- According to the U.S. Department of Transportation more than 10% of the GDP is related to transportation activity
- The 2015 Urban Mobility report estimates the cost of congestion in the US to be on the order of \$160 billion and 7 billion hours in delayed time
- 87% of all trips occur in a personal vehicle
 38% of all trips are single occupant (NHTS)

Project Overview

- New information technologies => a wealth of real time and dynamic data about traffic conditions
 - GPS systems both in vehicles/phones
 - interconnected data systems
 - on-board computers

- Engineering Tomorrow's Transportation Market:
 - distributed system transportation market where consumers and providers of transportation negotiate route and prices in real-time.
- Anyone with a car could offer to sell their unused vehicle capacity to other riders
 Make every car a taxi

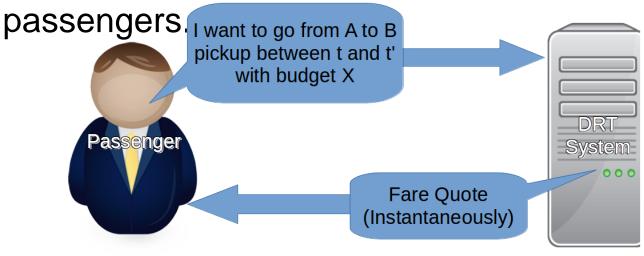
Basic Ridesharing Definitions

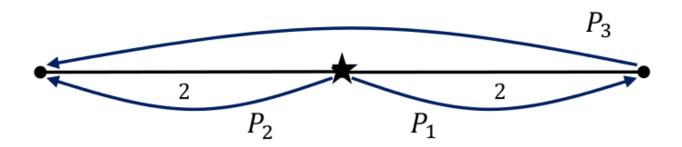
- Ridesharing is a joint-trip of more than two participants that share a vehicle and requires coordination with respect to itineraries and time
- Unorganized ridesharing
 - Family, colleagues, neighbors
 - Hitchhiking
 - Slugging
- Organized ridesharing
 - Matching of driver and rider, requires
 - Service operators
 - Matching agencies
 - Cost-sharing systems (Carma, Flinc)
 - Revenue maximizing systems/e-hailing (Uber, Sidecar, Lyft, etc)

Ridesharing Challenges and Research

High-dimensional Matching

- Trust and Reputation
- Mechanism Design
- Cost of Ridesharing
- Institutional Design

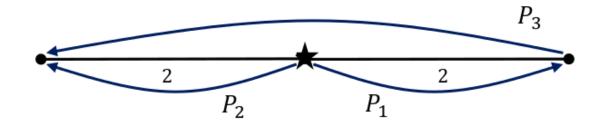

Ridesharing Challenges and Research


High-dimensional Matching

- Trust and Reputation
- Mechanism Design
- Cost of Ridesharing
- Planning

Our Setting

- Share the ride costs fairly and without any subsidies.
- Make sure passengers have no reason to drop out after accepting their fare quote.
- Motivate passengers to submit requests early. This allows the system to maximize serviced



	k=1	k=2	k=3
Distance	2	2	4
Total Cost	20	60	60
Marginal Cost	20	40	0
Shared Cost	?	?	?

2 P ₂	*	2 P ₁		3
	k=1	k=2	k=3	
Distance	2	2	4	
Total Cost	20	60	60	
Marginal Cost	20	40	0	
Fixed-Fare	10	10	10	
Incremental	20	40	0	
Proportional	15	15	30	

Desirable Properties

	k=1	k=2	k=3
Distance	2	2	4
Total Cost	20	60	60
Marginal Cost	20	40	0
Fixed-Fare	10	10	10
Incremental	20	40	0
Proportional	15	15	30

- ✗ Budget balance (e.g., Fixed-Fare)
- X Immediate response (e.g., Proportional)
- ✗ Online fairness (e.g., Incremental)

Desirable Properties

• **Budget balance** The total cost is shared by all serviced passengers.

Immediate response

The passengers' costs are monotonically nonincreasing (in time).

Online fairness

The costs per distance unit are monotonically non-decreasing (in passengers' arrival order).

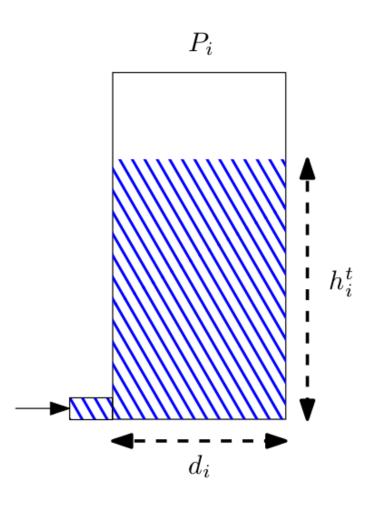
Truthfulness

The best strategy of every passenger is to declare trip as early as possible

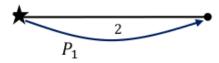
Rationality

Shared cost of serviced passengers <= fare limits

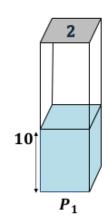
POCS

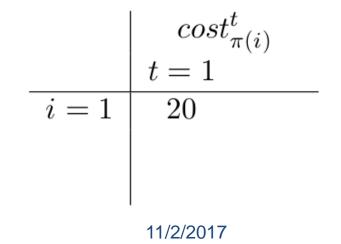

- Proportional Online Cost-Sharing is a mechanism that provides low fare quotes to passengers directly after they submit ride requests and calculates their actual fares directly before their rides.
- POCS calculates shared-costs by:

$$cost_{\pi(k)}^{t} := \alpha_{\pi(k)} \min_{k \le j \le t} \max_{1 \le i \le j} \underbrace{\frac{\sum_{l=i}^{j} mc_{\pi(l)}}{\sum_{l=i}^{j} \alpha_{\pi(l)}}}_{ccpa_{\pi(i,j)}}$$


POCS

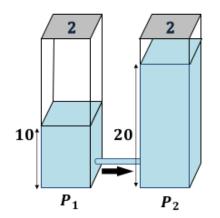
- POCS is a mix of
 - marginal cost-sharing (with respect to coalitions)
 - proportional cost-sharing (with respect to passengers within a coalition)

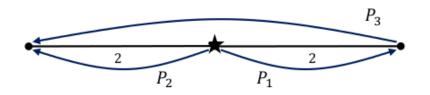

Water-Flow Analogy

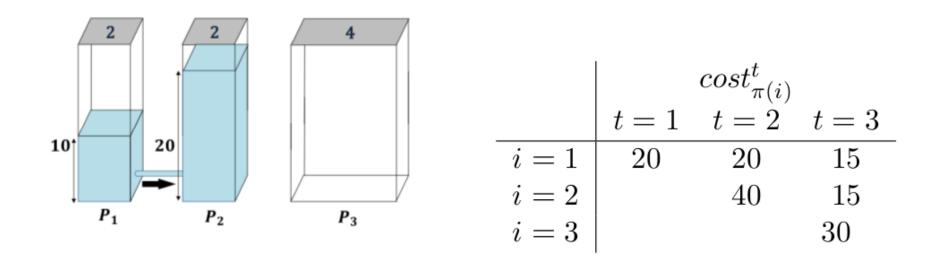


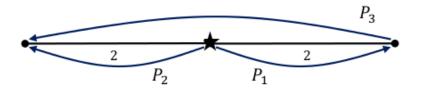
11/2/2017

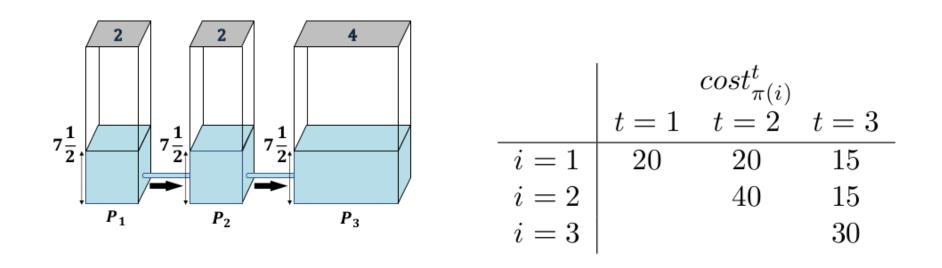
	k=1
Distance	2
Marginal Cost	20



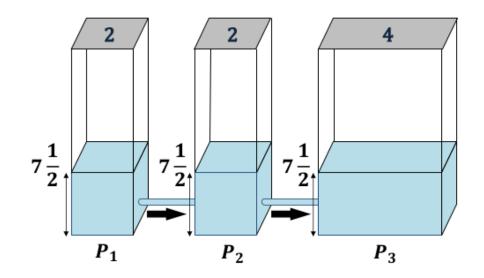

17


	k=1	k=2
Distance	2	2
Marginal Cost	20	40


$$\begin{array}{c} cost_{\pi(i)}^{t} \\ t = 1 \quad t = 2 \\ \hline i = 1 \\ i = 2 \\ \end{array} \begin{array}{c} cost_{\pi(i)}^{t} \\ t = 2 \\ 0 \\ 40 \\ \end{array}$$


	k=1	k=2	k=3
Distance	2	2	4
Marginal Cost	20	40	0

20

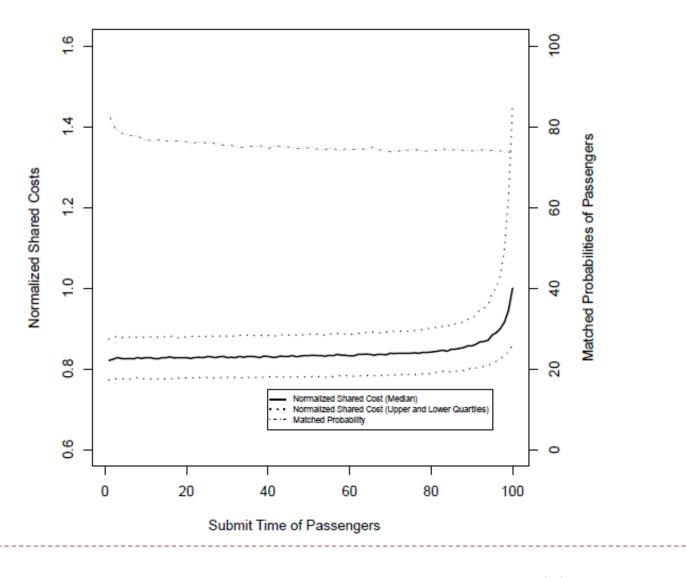

	k=1	k=2	k=3
Distance	2	2	4
Marginal Cost	20	40	0

POCS's Properties

- ✓ Budget balance
- ✓ Immediate response
- ✓ Online fairness

	k=1	k=2	k=3
Distance	2	2	4
Total Cost	20	60	60
Marginal Cost	20	40	0
POCS	15	15	30

POCS's Uniqueness


POCS is a mechanism that satisfies these properties and always minimizes the fare quotes of newly arriving passengers.

Simulation Setting

- 11 x 11 grid city
- 10,000 runs
- 25 identical shuttles
 - Initial location: a depot
 - Capacity: 10 seats
 - Operating hour: dawn to dusk
 - Identical speed and gas mileage
- 100 non-identical passengers
 - Random OD-pair
 - Sequential request submission
 - Random drop-off time window
 - Random fare limit

Simulation Results

24

Simulation Results

25

Benefit to delay ride request?

Scenario	Number	Time	Number	Situation	No	Situation V	Vorsens
	Shuttles	Window	Runs	Improves	Change	Not Drop.Out	Drop.Out
1	2	3.0	$33,\!116$	11%	32%	24%	33~%
2	2	4.0	37,047	15%	31%	39%	15~%
3	10	3.0	$36,\!975$	16%	31%	51%	2 %
4	10	4.0	$37,\!911$	17%	29%	51%	3~%

Conclusions

POCS mechanism induces

- online fairness, immediate response, individual rationality, budget balance and ex-post incentive compatibility
- How to adapt if computing travel cost approximately
- Dynamic POCS

Ridesharing Challenges and Research

High-dimensional Matching

- Trust and Reputation
- Mechanism Design
- Cost of Ridesharing
- Planning

Model Form	ulation		
$\mathbf{Min} \sum_{i \in N_P} \beta * (v_{n+i} - v_i)$	$) + \sum_{(i,j)\in A} (\gamma * D_{i,j} * x_{ij} + \mu * c_{ij}) + \sum_{(i,n+i)\in A} \lambda * D_{i,j}$	_{n+i} * U _i	
service all requests	$\sum_{j \in N} x_{ij} + u_i = 1 \qquad i \in N \setminus \{2n + 2\}$		
	$\sum_{i \in N} x_{ij} + u_j = 1 \qquad j \in N \setminus \{2n + 1\}$		
MTZ constraints	$v_i + t_{ij} \le v_j + M(1 - x_{ij})$ $i \in N$ $j \in N$		
index i before j	$E_i \le v_i \le L_i \qquad i \in N$ $b_{ki} \le b_{kj} + (1 - x_{ij}) \qquad (i,j) \in A \setminus (2n+2,2n+1)$	$k \in N \setminus \{i$	}
1 6	$z_{i} = G_{i} * (1 - u_{i}) + \sum_{m \in N} (b_{mi} * G_{m}) + O * (1 - u_{i})$	i∈N	
capacity	$z_i \leq Ca$	i∈N	
time-cost/pass	$t_{ij} \ge T_{ijk} - z_i - k * M$	$(i,j) \in A$	$k = 1,2 \dots Ca$
	$c_{ij} \ge C_{ijk} - z_i - k * M - (1 - x_{ij}) * M$	(i,j) <i>e</i> A	k = 1,2 Ca
28		44/0/0047	

11/2/2017

- -

- -

Model 1 Formulation

Elastic demand TAP with ridesharing prices

min
$$\sum_{a} \int_{0}^{y_{a}} tt_{a}(s) ds - \sum_{k} \int_{0}^{\delta_{k}} \Lambda_{k}(t) dt$$

s.t. $\mathbf{N}x^{k} - \Delta_{k}\delta_{k} = 0, \quad \forall k$
 $\sum_{k} x_{a}^{k} - y_{a} = 0, \forall a$

Travel cost
$$tt_a(s) = t_a \left(1 + \rho \left(\frac{s}{c_a}\right)^4\right)$$

Utility
$$\Lambda_k(\delta_k) = \alpha - \beta \delta_k$$

Supply function

Demand function

$$x_a^k \ge 0, \forall a, \forall k$$

29