Graph signal processing for clustering

Nicolas Tremblay

PANAMA Team, INRIA Rennes with Rémi Gribonval,
Signal Processing Laboratory 2, EPFL, Lausanne with Pierre Vandergheynst.
What’s clustering?
Given a series of N objects:

001112223334444
Given a series of N objects:

1/ Find adapted descriptors

\[
0 0 1 1 1 2 2 2 3 3 3 4 4 4 4
\]
Given a series of N objects:

1/ Find adapted descriptors

2/ Cluster
After step 1, one has:

- N vectors in d dimensions (descriptor dimension):

\[x_1, x_2, \cdots, x_N \in \mathbb{R}^d \]
After step 1, one has:

- N vectors in d dimensions (descriptor dimension):
 \[x_1, x_2, \ldots, x_N \in \mathbb{R}^d \]

- and their distance matrix $D \in \mathbb{R}^{N \times N}$.

Conclusion

N. Tremblay

Rennes, 13th of January 2016
After step 1, one has:

- \(N \) vectors in \(d \) dimensions (descriptor dimension):

 \[
 x_1, x_2, \cdots, x_N \in \mathbb{R}^d
 \]

- and their distance matrix \(D \in \mathbb{R}^{N \times N} \).

The **goal of clustering** is to assign a label \(c(i) = 1, \cdots, k \) to each object \(i \) in order to **organize / simplify / analyze the data**.
After step 1, one has:

- N vectors in d dimensions (descriptor dimension):
 \[x_1, x_2, \ldots, x_N \in \mathbb{R}^d \]

- and their *distance matrix* $D \in \mathbb{R}^{N \times N}$.

The *goal of clustering* is to assign a label $c(i) = 1, \ldots, k$ to each object i in order to organize / simplify / analyze the data.

There exists two different general types of methods:

- methods directly based on the x_i and/or D like k-means or hierarchical clustering.
After step 1, one has:

- N vectors in d dimensions (descriptor dimension):
 \[x_1, x_2, \ldots, x_N \in \mathbb{R}^d \]

- and their *distance matrix* $D \in \mathbb{R}^{N \times N}$.

The *goal of clustering* is to assign a label $c(i) = 1, \ldots, k$ to each object i in order to organize / simplify / analyze the data.

There exists two different general types of methods:

- methods directly based on the x_i and/or D like k-means or hierarchical clustering.
- graph-based methods.
Graph construction from the distance matrix D

Create a graph $\mathcal{G} = (V, E)$:
Graph construction from the distance matrix D

Create a graph $\mathcal{G} = (V, E)$:

- each node in V is one of the N objects
Graph construction from the distance matrix D

Create a graph $\mathcal{G} = (V, E)$:

- each node in V is one of the N objects
- each pair of nodes (i, j) is connected if the associated distance $D(i, j)$ is small enough.
Graph construction from the distance matrix D

Create a graph $G = (V, E)$:

- each node in V is one of the N objects
- each pair of nodes (i, j) is connected if the associated distance $D(i, j)$ is small enough.

For example, two connectivity possibilities:

- **Gaussian kernel**:
 1. all pairs of nodes are connected with links of weights $\exp(-D(i, j)/\sigma)$
 2. remove all links of weight inferior to ϵ
Graph construction from the distance matrix D

Create a graph $\mathcal{G} = (V, E)$:

- each node in V is one of the N objects
- each pair of nodes (i, j) is connected if the associated distance $D(i, j)$ is small enough.

For example, two connectivity possibilities:

- Gaussian kernel:
 1. all pairs of nodes are connected with links of weights $\exp(-D(i, j)/\sigma)$
 2. remove all links of weight inferior to ϵ

- k nearest neighbors: connect each node to its k nearest neighbors.
The problem now states:

Given the graph G representing the similarity between the N objects, find a partition of all nodes in k clusters.
The problem now states:
Given the graph G representing the similarity between the N objects, find a partition of all nodes in k clusters.

Many methods exist [Fortunato '10]:

- Modularity (or other cost-function) optimisation methods [Newman '04]
- Random walk methods [Delvenne '10]
- Methods inspired from statistical physics [Krzakala '12], information theory [Rosvall '07]...
- spectral methods
- ...
Three useful matrices

The adjacency matrix:

\[
W = \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

The degree matrix:

\[
S = \begin{bmatrix}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

The Laplacian matrix:

\[
L = S - W = \begin{bmatrix}
2 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
0 & -1 & 0 & 1 \\
\end{bmatrix}
\]
Three useful matrices

The adjacency matrix:

\[W = \begin{bmatrix} 0 & .5 & .5 & 0 \\ .5 & 0 & .5 & 4 \\ .5 & .5 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{bmatrix} \]

The degree matrix:

\[S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \]

The Laplacian matrix:

\[L = S - W = \begin{bmatrix} 1 & -.5 & -.5 & 0 \\ -.5 & 5 & -.5 & -4 \\ -.5 & -.5 & 1 & 0 \\ 0 & -4 & 0 & 4 \end{bmatrix} \]
The classical spectral clustering algorithm [Von Luxburg ’06]:

Given the N-node graph G of adjacency matrix W:

1. Compute:

$$U_k = (u_1 | u_2 | \cdots | u_k)$$

the first k eigenvectors of $L = S - W$.

The classical spectral clustering algorithm [Von Luxburg '06] :

Given the N-node graph G of adjacency matrix W :

1. Compute :

$$U_k = (u_1 | u_2 | \cdots | u_k)$$

the first k eigenvectors of $L = S - W$.

2. Consider each node i as a point in \mathbb{R}^k :

$$f_i = U_k^T \delta_i.$$
The classical spectral clustering algorithm [Von Luxburg '06]:

Given the N-node graph G of adjacency matrix W:

1. Compute:
 \[U_k = (u_1 | u_2 | \cdots | u_k) \]
 the first k eigenvectors of $L = S - W$.

2. Consider each node i as a point in \mathbb{R}^k:
 \[f_i = U_k^T \delta_i. \]

3. Run k-means with the Euclidean distance:
 \[D_{ij} = ||f_i - f_j|| \]
 and obtain k clusters.
What’s the point of using a graph?

N points in $d = 2$ dimensions. Result with k-means ($k=2$):

After creating a graph from the N points’ interdistances, and running the spectral clustering algorithm (with $k=2$):
Computation bottlenecks of the spectral clustering algorithm

When N and/or k become too large, there are two main bottlenecks in the algorithm:

1. The partial eigendecomposition of the Laplacian.
When N and/or k become too large, there are two main bottlenecks in the algorithm:

1. The partial eigendecomposition of the Laplacian.
2. k-means.

Our goal: Circumvent both!
Computation bottlenecks of the spectral clustering algorithm

When \(N \) and/or \(k \) become too large, there are two main bottlenecks in the algorithm:

1. The partial eigendecomposition of the Laplacian.
2. \(k \)-means.

Our goal:

Circumvent both!
What’s graph signal processing?
What’s a graph signal?

Graph signal processing... applied to clustering

N. Tremblay
Graph signal processing for clustering

Rennes, 13th of January 2016 11 / 26
What’s a graph signal?

- Graph signal processing...
- ... applied to clustering
- Conclusion
What’s a graph signal?

![Graph Signal Example]

- **C** vs. **Month**
- **C** vs. **Heure**

N. Tremblay
Graph signal processing for clustering
Rennes, 13th of January 2016
What’s a graph signal?
What’s a graph signal?
What’s a graph signal?
What’s the graph Fourier matrix?

[Hammond ’11]

The “classical” graph:

\[
L_{cl} = \begin{bmatrix}
2 & -1 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 2 & -1 \\
-1 & 0 & 0 & \cdots & -1 & 2 \\
\end{bmatrix}
\]

All classical Fourier modes are the eigenvectors of \(L_{cl} \)
What’s the graph Fourier matrix?

[Hammond ’11]

The “classical” graph:

Any graph:

\[L_{cl} = \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 \\ -1 & 0 & 0 & \cdots & -1 & 2 \end{bmatrix} \]

All classical Fourier modes are the eigenvectors of \(L_{cl} \)

By analogy, any graph’s Fourier modes are the eigenvectors of its Laplacian matrix \(L \).
The graph Fourier matrix

\[L = S - W \]

Its eigenvectors:

\[U = (u_1 | u_2 | \cdots | u_N) \]

form the graph Fourier orthonormal basis.

Its eigenvalues:

\[0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N \]

represent the graph frequencies. \(\lambda_i \) is the squared frequency associated to the Fourier mode \(u_i \).
Illustration

Low frequency:

High frequency:
The Fourier transform

- given $f \in \mathbb{R}^N$ a signal on a graph of size N.
The Fourier transform

- given $f \in \mathbb{R}^N$ a signal on a graph of size N.
- \hat{f} is obtained by decomposing f on the eigenvectors u_i:

$$
\hat{f} = \begin{pmatrix}
\langle u_1, f \rangle \\
\langle u_2, f \rangle \\
\langle u_3, f \rangle \\
\vdots \\
\langle u_N, f \rangle
\end{pmatrix}, \text{ i.e. } \hat{f} = U^T f
$$
The Fourier transform

- given \(f \in \mathbb{R}^N \) a signal on a graph of size \(N \).
- \(\hat{f} \) is obtained by decomposing \(f \) on the eigenvectors \(u_i \):

\[
\hat{f} = \left(\begin{array}{c}
\langle u_1, f \rangle \\
\langle u_2, f \rangle \\
\langle u_3, f \rangle \\
\vdots \\
\langle u_N, f \rangle
\end{array} \right), \text{ i.e. } \hat{f} = U^T f
\]

- Inversely, the inverse Fourier transform reads:

\[
f = U \hat{f}
\]
The Fourier transform

- given $f \in \mathbb{R}^N$ a signal on a graph of size N.
- \hat{f} is obtained by decomposing f on the eigenvectors u_i:

$$
\hat{f} = \begin{pmatrix}
< u_1, f > \\
< u_2, f > \\
< u_3, f > \\
... \\
< u_N, f >
\end{pmatrix}, \text{ i.e. } \hat{f} = U^T f
$$

- Inversely, the inverse Fourier transform reads:

$$
f = U \hat{f}
$$

- The Parseval theorem stays valid: $\forall (g, h) \quad < g, h > = < \hat{g}, \hat{h} >$
Filtering

Given a filter function g defined in the Fourier space.

![Graph of a filter function $g(\lambda)$]
Filtering

Given a filter function g defined in the Fourier space.

In the Fourier space, the signal filtered by g reads:

$$\hat{f}g = \begin{pmatrix} \hat{f}(1)g(\lambda_1) \\ \hat{f}(2)g(\lambda_2) \\ \hat{f}(3)g(\lambda_3) \\ \vdots \\ \hat{f}(N)g(\lambda_N) \end{pmatrix} = \hat{G} \hat{f} \text{ with } \hat{G} = \begin{pmatrix} g(\lambda_1) & 0 & 0 & \cdots & 0 \\ 0 & g(\lambda_2) & 0 & \cdots & 0 \\ 0 & 0 & g(\lambda_3) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & g(\lambda_N) \end{pmatrix}$$
Filtering

Given a filter function \(g \) defined in the Fourier space.

In the Fourier space, the signal filtered by \(g \) reads:

\[
\hat{f}^g = \begin{pmatrix}
\hat{f}(1) g(\lambda_1) \\
\hat{f}(2) g(\lambda_2) \\
\hat{f}(3) g(\lambda_3) \\
\vdots \\
\hat{f}(N) g(\lambda_N)
\end{pmatrix} = \hat{G} \hat{f}
\]

with

\[
\hat{G} = \begin{pmatrix}
g(\lambda_1) & 0 & 0 & \cdots & 0 \\
0 & g(\lambda_2) & 0 & \cdots & 0 \\
0 & 0 & g(\lambda_3) & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & g(\lambda_N)
\end{pmatrix}
\]

In the node space, the filtered signal \(f^g \) reads therefore:

\[
f^g = U \hat{G} U^\top f = Gf
\]
So where’s the link?
Remember: the classical spectral clustering algorithm

Given the N-node graph G of adjacency matrix W:

1. Compute: $$U_k = (u_1 | u_2 | \cdots | u_k)$$ the first k eigenvectors of $L = S - W$.

2. Consider each node i as a point in \mathbb{R}^k: $$f_i = U_k^\top \delta_i.$$

3. Run k-means with the Euclidean distance: $$D_{ij} = ||f_i - f_j||$$ and obtain k clusters.
Remember : the classical spectral clustering algorithm

Given the N-node graph G of adjacency matrix W :

1. Compute :

$$U_k = (u_1|u_2|\cdots|u_k)$$

the first k eigenvectors of $L = S - W$.

2. Consider each node i as a point in \mathbb{R}^k :

$$f_i = U_k^\top \delta_i.$$

3. Run k-means with the Euclidean distance : $D_{ij} = ||f_i - f_j||$ and obtain k clusters.

Let’s work on the first bottleneck : estimate D_{ij} without partially diagonalizing the Laplacian matrix.
Ideal low-pass filtering

1st step : assume we know U_k and λ_k

Given h_{λ_k} an ideal LP, $H_{\lambda_k} = U H_{\lambda_k} U^\top = U_k U_k^\top$ is its filter matrix.
Ideal low-pass filtering

1st step : assume we know U_k and λ_k

Given h_{λ_k} an ideal LP, $H_{\lambda_k} = U H_{\lambda_k} U^\top = U_k U_k^\top$ is its filter matrix.

Let $R = (r_1 | r_2 | \cdots | r_{\eta}) \in \mathbb{R}^{N \times \eta}$ be a random Gaussian matrix. We define $\tilde{f}_i = (H_{\lambda_k} R)^\top \delta_i \in \mathbb{R}^\eta$ and $\tilde{D}_{ij} = \| \tilde{f}_i - \tilde{f}_j \|$.
Ideal low-pass filtering

1st step : assume we know U_k and λ_k

Given h_{λ_k} an ideal LP,

$$H_{\lambda_k} = U H_{\lambda_k} U^\top = U_k U_k^\top$$

is its filter matrix.

Let $R = \begin{pmatrix} r_1 & r_2 & \cdots & r_\eta \end{pmatrix} \in \mathbb{R}^{N \times \eta}$ be a random Gaussian matrix.

We define $\tilde{f}_i = (H_{\lambda_k} R)^\top \delta_i \in \mathbb{R}^\eta$ and $\tilde{D}_{ij} = \| \tilde{f}_i - \tilde{f}_j \|$.

Norm conservation theorem for ideal filter

Let $\epsilon > 0$, if $\eta > \eta_0 \sim \frac{\log N}{\epsilon^2}$, then, with proba $> 1 - 1/N$, we have :

$$\forall (i, j) \in [1, N]^2 \quad (1 - \epsilon) D_{ij} \leq \tilde{D}_{ij} \leq (1 + \epsilon) D_{ij}.$$
Non-ideal low-pass filtering
2nd step: assume all we know is λ_k

In practice, we use a poly approx of order m of h_{λ_k}:

$$\tilde{h}_{\lambda_k} = \sum_{l=1}^{m} \alpha_l \lambda^l \simeq h_{\lambda_k}.$$

- Does not require the knowledge of U_k.
- Only involves matrix-vector multiplications [costs $O(m|E|)$].
Non-ideal low-pass filtering

2nd step: assume all we know is λ_k

In practice, we use a poly approx of order m of h_{λ_k}:

$$\tilde{h}_{\lambda_k} = \sum_{l=1}^{m} \alpha_l \lambda^l \simeq h_{\lambda_k}.$$

Indeed, in this case, filtering a vector x reads:

$$\tilde{H}_{\lambda_k} x = U\tilde{h}_{\lambda_k}(\Lambda)U^\top x = U \sum_{l=1}^{m} \alpha_l \Lambda^l U^\top x = \sum_{l=1}^{m} \alpha_l L^l x$$

- Does not require the knowledge of U_k.
- Only involves matrix-vector multiplications [costs $O(m|E|)$].
Non-ideal low-pass filtering
2nd step : assume all we know is λ_k

In practice, we use a poly approx of order m of h_{λ_k}:

$$\tilde{h}_{\lambda_k} = \sum_{l=1}^{m} \alpha_l \lambda^l \simeq h_{\lambda_k}.$$

Indeed, in this case, filtering a vector x reads:

$$\tilde{H}_{\lambda_k} x = U \tilde{h}_{\lambda_k} (\Lambda) U^\top x = U \sum_{l=1}^{m} \alpha_l \Lambda^l U^\top x = \sum_{l=1}^{m} \alpha_l L^l x$$

- Does not require the knowledge of U_k.
- Only involves matrix-vector multiplications [costs $O(m|E|)$].

The theorem stays (more or less) valid with this non-ideal filtering!
Goal : given L, estimate its k-th eigenvalue as fast as possible.
Last step: estimate λ_k

Goal: given L, estimate its k-th eigenvalue as fast as possible.

We use eigencount techniques (also based on polynomial filtering of random vectors!):

- given the interval $[0, b]$, get an approximation of the number of enclosed eigenvalues.
- And find λ_k by dichotomy on b.
Accelerated spectral algorithm

Given the N-node graph \mathcal{G} of adjacency matrix W:

1. Estimate λ_k, the k-th eigenvalue of L.
2. Generate η random graph signals in matrix $R \in \mathbb{R}^{N \times \eta}$.
3. Filter them with \tilde{H}_{λ_k} and treat each node i as a point in \mathbb{R}^η:
 \[\tilde{f}^\top_i = \delta^\top_i \tilde{H}_{\lambda_k} R. \]
4. Run k-means with the Euclidean distance:
 \[\tilde{D}_{ij} = ||\tilde{f}_i - \tilde{f}_j|| \]
 and obtain k clusters.

Let's work on the second bottleneck: avoid k-means in possibly very large dimension (N-step 4).
Accelerated spectral algorithm

Given the N-node graph G of adjacency matrix W:

1. Estimate λ_k, the k-th eigenvalue of L.

2. Generate η random graph signals in matrix $R \in \mathbb{R}^{N \times \eta}$.

3. Filter them with \tilde{H}_{λ_k} and treat each node i as a point in \mathbb{R}^η:
$$\tilde{f}^\top_i = \delta^\top_i \tilde{H}_{\lambda_k} R.$$

4. Run k-means with the Euclidean distance $\tilde{D}_{ij} = ||\tilde{f}_i - \tilde{f}_j||$ and obtain k clusters.

Let's work on the second bottleneck: avoid k-means in possibly very large dimension N (step 4).
Accelerated spectral algorithm

Given the N-node graph G of adjacency matrix W:

1. Estimate λ_k, the k-th eigenvalue of L.
2. Generate η random graph signals in matrix $R \in \mathbb{R}^{N \times \eta}$.

Let's work on the second bottleneck: avoid k-means in possibly very large dimension N (step 4).
Accelerated spectral algorithm

Given the N-node graph G of adjacency matrix W :

1. Estimate λ_k, the k-th eigenvalue of L.
2. Generate η random graph signals in matrix $R \in \mathbb{R}^{N \times \eta}$.
3. Filter them with \tilde{H}_{λ_k} and treat each node i as a point in \mathbb{R}^η :

$$\tilde{f}_i^T = \delta_i^T \tilde{H}_{\lambda_k} R.$$
Accelerated spectral algorithm

Given the N-node graph G of adjacency matrix W:

1. Estimate λ_k, the k-th eigenvalue of L.
2. Generate η random graph signals in matrix $R \in \mathbb{R}^{N \times \eta}$.
3. Filter them with \tilde{H}_{λ_k} and treat each node i as a point in \mathbb{R}^η:
 $$\tilde{f}_i^\top = \delta_i^\top \tilde{H}_{\lambda_k} R.$$
4. Run k-means with the Euclidean distance: $\tilde{D}_{ij} = ||\tilde{f}_i - \tilde{f}_j||$ and obtain k clusters.
Accelerated spectral algorithm

Given the N-node graph \mathcal{G} of adjacency matrix W:

1. Estimate λ_k, the k-th eigenvalue of L.
2. Generate η random graph signals in matrix $R \in \mathbb{R}^{N \times \eta}$.
3. Filter them with \tilde{H}_{λ_k} and treat each node i as a point in \mathbb{R}^η:
 \[
 \tilde{f}_i^\top = \delta_i^\top \tilde{H}_{\lambda_k} R.
 \]
4. Run k-means with the Euclidean distance: $\tilde{D}_{ij} = ||\tilde{f}_i - \tilde{f}_j||$
 and obtain k clusters.

Let’s work on the second bottleneck: avoid k-means in possibly very large dimension N (step 4).
Fast spectral algorithm?

Given the N-node graph G of adjacency matrix W:

1. Estimate λ_k, the k-th eigenvalue of L.
2. Generate η random graph signals in matrix $R \in \mathbb{R}^{N \times \eta}$.
3. Filter them with \tilde{H}_{λ_k} and treat each node i as a point in \mathbb{R}^η:

$$\tilde{f}_i^\top = \delta_i^\top \tilde{H}_{\lambda_k} R.$$

4. Sample randomly $\rho \approx k \log k << N$ nodes out of N:

$$\tilde{f}_i^r = M\tilde{f}_i = (M\tilde{H}_{\lambda_k} R)^\top \delta_i^r.$$

5. Run k-means in this reduced space with the Euclidean distance:

$$\bar{D}_{ij}^r = \|\tilde{f}_i^r - \tilde{f}_j^r\|$$

and obtain k clusters.

6. Interpolate cluster indicator functions c_i^r on the whole graph:

$$\tilde{c}_l = \arg\min_{x \in \mathbb{R}^N} \|Mx - c_i^r\|^2 + \mu x L^\top x.$$
Compressive spectral clustering: a summary

1. generate a feature vector for each node by filtering few random gaussian random signal on G;
Compressive spectral clustering : a summary

1. generate a feature vector for each node by filtering few random gaussian random signal on G ;
2. subsample the set of nodes ;
Compressive spectral clustering: a summary

1. generate a feature vector for each node by filtering few random gaussian random signal on \mathcal{G};
2. subsample the set of nodes;
3. cluster the reduced set of nodes;
Compressive spectral clustering : a summary

1. generate a feature vector for each node by filtering few random gaussian random signal on G ;
2. subsample the set of nodes ;
3. cluster the reduced set of nodes ;
4. interpolate the cluster indicator vectors back to the complete graph.
This work was done in collaboration with:

- Gilles Puy and Rémi Gribonval from the PANAMA team (INRIA).
- Pierre Vandergheynst from EPFL.
This work was done in collaboration with:

- **Gilles Puy** and **Rémi Gribonval** from the PANAMA team (INRIA).
- **Pierre Vandergheynst** from EPFL.

Part of this work has been published (or submitted):

- Circumventing the first bottleneck has been accepted to ICASSP 2016
- Interpolation of k-bandlimited graph signals has been submitted to ACHA in November (an application of which helps us circumvent the second bottleneck).
Perspectives and difficult questions

Two difficult questions (among others):

1. Given a semi-definite positive matrix, how to estimate as fast as possible its k-th eigenvalue, and only that one?
2. How to subsample ρ nodes out of N while ensuring that clustering them in k classes is the result one would have obtained by clustering all N nodes?
Perspectives and difficult questions

Two difficult questions (among others):

1. Given a semi-definite positive matrix, how to estimate as fast as possible its k-th eigenvalue, and only that one?
2. How to subsample ρ nodes out of N while ensuring that clustering them in k classes is the result one would have obtained by clustering all N nodes?

Perspectives

1. How about if nodes are added one by one?
2. Rational filters instead of polynomial filters?
3. Approximating other spectral clustering algorithms?