Using Brain–Computer Interfaces as a Tool to Improve Athletes’ Performance.

Post-Doc in Collaboration with ——

Anatole Lécuyer, Ferran Argelaguet – Inria
Benoît Bideau, Richard Kulpa – Univ. Rennes II / ENS
Jose del R. Millán, Ricardo Chavarriaga – EPFL

Camille Jeunet

Workshop of the EPFL–Inria International Lab ——
2017–02–07
Part 0

Background
Background
Background

Studied Cognitive Sciences @Bordeaux & @Montreal
Background

PhD in Cognitive Sciences
@Bordeaux & @Bristol/Brighton

Co-Supervised by:
F. Lotte, B. N’Kaoua, M. Hachet & S. Subramanian
Background

Post-Doc EPFL/Inria International Lab
@Rennes & @Genève
Part I

PhD Project

Research Focus – EEG-based MI–BCIs

MI–BCI = Mental–Imagery based Brain–Computer Interface

[Wolpaw & Wolpaw (2012)]
Research Focus – EEG–based MI–BCIs
Research Focus – EEG-based MI-BCIs
Research Focus – EEG-based MI–BCIs
Research Focus – EEG–based MI–BCIs

[Wolpaw & Wolpaw (2012)]
Research Focus – EEG–based MI–BCIs
Research Focus – EEG–based MI–BCIs

[Wolpaw & Wolpaw (2012)]
Research Focus – EEG-based MI–BCIs
Research Focus – EEG-based MI-BCIs
MI-BCIs are Not Reliable Enough

[Lotte et al. (2013) – Frontiers in Neuroscience]
MI–BCIs are **Not Reliable Enough**

Sensors & Signal Processing Algorithms are Imperfect

Users do not Manage to Acquire BCI skills

[Lotte et al. (2013) – Frontiers in Neuroscience]
MI–BCIs are Not Reliable Enough

Signal Processing Algorithms are Imperfect

Users do not Manage to Acquire MI–BCI skills

[Lotte et al. (2013) – Frontiers in Neuroscience]
What are MI–BCI skills?

[Jeunet et al. (2016) – Wiley–Iste]
What are MI–BCI skills?

Generate clear MI
What are MI–BCI skills?

[Jeunet et al. (2016) – Wiley-Iste]
What are MI–BCI skills?
What are MI–BCI skills?
What are MI–BCI skills?

Stable & Distinct brain patterns

[Jeunet et al. (2016) – Wiley–Iste]
What are MI–BCI skills?

Generate clear MI
What are MI–BCI skills?

Process the feedback to improve MI

Generate clear MI

[Jeunet et al. (2016) – Wiley-Iste]
Current Training Protocols are theoretically Inappropriate.
Objective

Improving MI–BCI User–Training.
Objective

Understanding & Improving MI–BCI User–Training.

[Kübler et al. (2014) – PLoS One]
Roadmap
Roadmap

Cognitive Factors

Personality

Generate clear MI
Roadmap

- Feedback
 - Process the feedback to improve MI
- Cognitive Factors
- Personality
 - Generate clear MI
Roadmap

How Do **Cognitive Factors** Impact MI–BCI Performance?

How Does **Personality** Impact MI–BCI Performance?

How Does Standard **Feedback** Impact MI–BCI Performance?
Roadmap

- How Do **Cognitive Factors** Impact MI–BCI Performance?
- How Does **Personality** Impact MI–BCI Performance?
- How Does Standard **Feedback** Impact MI–BCI Performance?
Roadmap

<table>
<thead>
<tr>
<th>Part I</th>
<th>Understanding Influential Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II</td>
<td>Improving Proposing a Solution</td>
</tr>
<tr>
<td>Part III</td>
<td>Prospects – Ideas for Future Work</td>
</tr>
</tbody>
</table>

- **How Do **Cognitive Factors** Impact MI–BCI Performance?**
- **How Does **Personality** Impact MI–BCI Performance?**
- **How Does Standard Feedback Impact MI–BCI Performance?**
Roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II – Improving Proposing a Solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part III – Prospects – Ideas for Future Work</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cognitive Factors

- **Part I - Influential Factors**

STUDY #1

<table>
<thead>
<tr>
<th>Training tasks</th>
<th>124 - 12</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Duration</td>
<td>6 x 5 x 45</td>
<td></td>
</tr>
<tr>
<td># Participants</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

STUDY #2

| Training Duration | 1 x 5 x 40 | |
| # Participants | 20 | |

[Friedrich et al., 2013 – PLOS One]
[Jeunet et al., 2015 – PLOS One]
Cognitive Factors

- Part I - Influential Factors

STUDY #1

Correlation MI–BCI Performance & Mental Rotation Scores

> $r = 0.696$ – $p < 0.005$

[Jeunet et al., 2016 – J. Neural Engineering]

STUDY #2

Correlation MI–BCI Performance & Mental Rotation Scores

> $r = 0.464$ – $p < 0.05$

[Mental Rotation test, Vandenberg, 1978]

[Jeunet et al., 2015 – PLOS One]
Roadmap

- **Part I** – Understanding Influential Factors
- **Part II** – Improving Proposing a Solution
- **Part III** – Prospects – Ideas for Future Work

How Do Cognitive Factors Impact MI–BCI Performance?

How Does Personality Impact MI–BCI Performance?

How Does Standard Feedback Impact MI–BCI Performance?
Roadmap

- **Part I** – Understanding Influential Factors
 - How Do **Cognitive Factors** Impact MI–BCI Performance?
 - Spatial Abilities (SA)
- **Part II** – Improving Proposing a Solution
- **Part III** – Prospects – Ideas for Future Work
Roadmap

<table>
<thead>
<tr>
<th>Part I – Understanding Influential Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Do Cognitive Factors Impact MI–BCI Performance?</td>
</tr>
<tr>
<td>▼ Spatial Abilities (SA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II – Improving Proposing a Solution</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Part III – Prospects – Ideas for Future Work</th>
</tr>
</thead>
</table>

| How Does Personality Impact MI–BCI Performance? |

| How Does Standard Feedback Impact MI–BCI Performance? |
Cognitive Factors

Part II – Proposing a solution

A spatial ability training improves users’ spatial abilities, which in turn has a positive impact on users’ MI-BCI performance.

[Moreau et al., 2012 – J. of Individual Differences]
[Hoyek et al., 2009 – Learning & Teaching medicine]
[Jeunet et al., 2016 – BCI Meeting]
Cognitive Factors

- Part II – *Proposing a solution*

Designing a Spatial Ability (SA) training protocols.

[Jeunet et al., 2016 – BCI Meeting]
Cognitive Factors

- Part II – *Proposing a solution*

Testing the SA training protocol: Results (N=24)

- Participants improved their mental rotation scores
- No global effect on MI–BCI performance/progression
- BUT effect of the intensity on the training on their MI–BCI progression:
Cognitive Factors

- Part II - Proposing a solution

A spatial ability training improves users’ spatial abilities, which in turn has a positive impact on users’ MI-BCI performance.

[Jeunet et al., 2016 – BCI Meeting]
Roadmap

- Part I – Understanding Influential Factors
 - How Do Cognitive Factors Impact MI–BCI Performance?
 - Spatial Abilities (SA)
- Part II – Improving Proposing a Solution
 - SA Training:
- Part III – Prospects – Ideas for Future Work
 - How Does Personality Impact MI–BCI Performance?
 - How Does Standard Feedback Impact MI–BCI Performance?
Roadmap

<table>
<thead>
<tr>
<th>Part I</th>
<th>Understanding Influential Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II</td>
<td>Improving Proposing a Solution</td>
</tr>
<tr>
<td>Part III</td>
<td>Prospects – Ideas for Future Work</td>
</tr>
</tbody>
</table>

How Do Cognitive Factors Impact MI–BCI Performance?

- Spatial Abilities (SA)

How Does Personality Impact MI–BCI Performance?

How Does Standard Feedback Impact MI–BCI Performance?
Cognitive Factors

Part III – Prospects: Stroke Rehabilitation

Stroke Motor After-Effects

Standard Rehabilitation Motor Tasks

Motor-imagery BCI
Brain-Activity Visu. Electro-stimulation

Spatial Ability Training + BCI
Idem.

Are you doing the task?
Risk: increase Depression?

Risk: increase Depression?
Roadmap

Part I - Understanding Influential Factors
- **How Do Cognitive Factors Impact MI-BCI Performance?**
 - Spatial Abilities (SA)

Part II - Improving Proposing a Solution
- **SA Training:**
- **Application: Stroke Rehabilitation?**

Part III - Prospects - Ideas for Future Work
- **How Does Personality Impact MI-BCI Performance?**
- **How Does Standard Feedback Impact MI-BCI Performance?**
Roadmap

- Part I - Understanding Influential Factors
 - How Do Cognitive Factors Impact MI-BCI Performance?
 - Spatial Abilities (SA)
- Part II - Improving Proposing a Solution
- Part III - Prospects - Ideas for Future Work
 - How Does Personality Impact MI-BCI Performance?
 - How Does Standard Feedback Impact MI-BCI Performance?
Personality

Part I - Influential Factors

<table>
<thead>
<tr>
<th>Training tasks</th>
<th>124 - 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Duration</td>
<td>6 x 5 x 45</td>
</tr>
<tr>
<td># Participants</td>
<td>X 18</td>
</tr>
</tbody>
</table>

[Jeunet et al., 2015 – PLOS One]
Personality

– Part I – *Influential Factors*

\[P = \alpha_0 - \alpha_1 \times \text{Tension} + \alpha_2 \times \text{Abstractness} + \alpha_3 \times \text{Learning-Style} + \alpha_4 \times \text{Self-Reliance} \]

<table>
<thead>
<tr>
<th>R</th>
<th>(R^2)</th>
<th>(R^2) \text{ adj.}</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.925</td>
<td>0.857</td>
<td>0.809</td>
<td>1.919</td>
</tr>
</tbody>
</table>

[Jeunet et al., 2015 – PLOS One]
Roadmap

- Part I - Understanding Influential Factors
 ▼ Spatial Abilities (SA)
 ▼ SA Training:
 ▼ Application: Stroke Rehabilitation?

- Part II - Improving Proposing a Solution

- Part III - Prospects Ideas for Future Work
 ▼ How Do Cognitive Factors Impact MI-BCI Performance?

- How Does Personality Impact MI-BCI Performance?

- How Does Standard Feedback Impact MI-BCI Performance?
Roadmap

<table>
<thead>
<tr>
<th>Part I – Understanding Influential Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Do Cognitive Factors Impact MI-BCI Performance?</td>
</tr>
<tr>
<td>▼ Spatial Abilities (SA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II – Improving Proposing a Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ SA Training:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III – Prospects – Ideas for Future Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ Application: Stroke Rehabilitation?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How Does Personality Impact MI-BCI Performance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ Tension, self-reliance, abstractedness, learning style.</td>
</tr>
</tbody>
</table>

| How Does Standard Feedback Impact MI-BCI Performance? |
Roadmap

<table>
<thead>
<tr>
<th>Part I – Understanding Influential Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Do Cognitive Factors Impact MI–BCI Performance?</td>
</tr>
<tr>
<td>▼ Spatial Abilities (SA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II – Improving Proposing a Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Does Personality Impact MI–BCI Performance?</td>
</tr>
<tr>
<td>▼ Tension, self-reliance, abstractedness, learning style.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III – Prospects – Ideas for Future Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Does Standard Feedback Impact MI–BCI Performance?</td>
</tr>
</tbody>
</table>

Léa Pillette
Boris Mansencal
Personality

Part II – Proposing a solution

\[P = \alpha_0 - \alpha_1 \times \text{Tension} + \alpha_2 \times \text{Abstractness} + \alpha_3 \times \text{Learning-Style} + \alpha_4 \times \text{Self-Reliance} \]
Personality

- Part II – Proposing a solution

\[P = \alpha_0 - \alpha_1 \times \text{Tension} + \alpha_2 \times \text{Abstractness} + \alpha_3 \times \text{Learning-Style} + \alpha_4 \times \text{Self-Reliance} \]
Personality

Part II – Proposing a solution

\[P = \alpha_0 - \alpha_1 \times \text{Tension} + \alpha_2 \times \text{Abstractness} + \alpha_3 \times \text{Learning-Style} + \alpha_4 \times \text{Self-Reliance} \]

Need for Social Presence & Emotional Support to learn …

[Shute, 2008 – Review of Educational Research]
[Meyer & Turner, 2002 – Educational Psychologist]
Personality

- Part II – Proposing a solution

 Providing a social presence & emotional support to MI–BCI users, using a Learning Companion, during their training will improve the training process in terms of MI–BCI performance & user experience.

[N’Kambou et al., 2010 – Advances in Intelligent Tutoring Systems]
Personality

- Part II - Proposing a solution

PEANUT – Personalised Emotional Agent for Neurotechnology User-Training
Personality

– Part II – Proposing a solution

Appearance –

Design based on …

. The literature
. A questionnaire (N=97)
Personality

- Part II – Proposing a solution

Behaviour –
Personality

– Part II – Proposing a solution

Behaviour –

What? How? When?
Personality

– Part II – Proposing a solution

Behaviour –

What? How? When?

Support Effort
Empathy

Results Good
Change Strategy

[based on the literature]
Personality

– Part II – Proposing a solution

Behaviour –

What?

Support Effort

Empathy

Results Good

Change Strategy

How?

Exclamatory vs. Declarative

Personal vs. Non personal

When?

[questionnaire – N=104]

[based on the literature]

[<Pillette, Jeunet et al. – Submitted>]}
Personality

- Part II – *Proposing a solution*

Behaviour –

What?
- Support Effort
- Empathy
- Results Good
- Change Strategy

How?
- Exclamatory vs. Declarative
- Personal vs. Non personal

When?
- [rule tree]

[questionnaire – N=104]

[based on the literature]

Pillette, Jeunet et al. – Submitted
Providing a social presence & emotional support to MI–BCI users during their training will improve the training process in terms of MI–BCI performance & user experience.

[Kübler et al. (2014) – PLoS One]
Roadmap

- **Part I** – Understanding Influential Factors
 - How Do Cognitive Factors Impact MI–BCI Performance?
 - Spatial Abilities (SA)
 - SA Training:
 - Application: Stroke Rehabilitation?

- **Part II** – Improving Proposing a Solution
 - How Does Personality Impact MI–BCI Performance?
 - Tension, self-reliance, abstractedness, learning style.

- **Part III** – Prospects – Ideas for Future Work

Léa Pillette

Boris Mansencal
Roadmap

<table>
<thead>
<tr>
<th>Part I – Understanding Influential Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Do Cognitive Factors Impact MI–BCI Performance?</td>
</tr>
<tr>
<td>▼ Spatial Abilities (SA)</td>
</tr>
<tr>
<td>▼ SA Training:</td>
</tr>
<tr>
<td>▼ Application: Stroke Rehabilitation?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II – Improving Proposing a Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Does Personality Impact MI–BCI Performance?</td>
</tr>
<tr>
<td>▼ Tension, self-reliance, abstractedness, learning style.</td>
</tr>
<tr>
<td>▼ Learning Companion: PEANUT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III – Prospects – Ideas for Future Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Does Standard Feedback Impact MI–BCI Performance?</td>
</tr>
</tbody>
</table>
Roadmap

<table>
<thead>
<tr>
<th>Part I</th>
<th>Understanding Influential Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ Spatial Abilities (SA)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II</th>
<th>Improving Proposing a Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ SA Training:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III</th>
<th>Prospects – Ideas for Future Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ Application: Stroke Rehabilitation?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How Do Cognitive Factors Impact MI−BCI Performance?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>How Does Personality Impact MI−BCI Performance?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>How Does Standard Feedback Impact MI−BCI Performance?</th>
</tr>
</thead>
</table>
Personality

– Part III – Prospects: Cognitive Support

PEANUT & TEEGI

Roadmap

- Part I - Understanding Influential Factors
 - How Do Cognitive Factors Impact MI-BCI Performance?
 ▼ Spatial Abilities (SA)

- Part II - Improving Proposing a Solution
 - Application: Stroke Rehabilitation?

- Part III - Prospects – Ideas for Future Work
 - How Does Personality Impact MI-BCI Performance?
 ▼ Tension, self-reliance, abstractedness, learning style.
 ▼ Learning Companion: PEANUT

- How Does Standard Feedback Impact MI-BCI Performance?
Roadmap

- **Part I** - Understanding Influential Factors
 - Spatial Abilities (SA)
- **Part II** - Improving Proposing a Solution
 - SA Training: Stroke Rehabilitation?
 - Learning Companion: PEANUT
- **Part III** - Prospects – Ideas for Future Work
 - Improvement: Cognitive Support

How Do Cognitive Factors Impact MI–BCI Performance?

How Does **Personality Impact MI–BCI Performance?**

How Does Standard Feedback Impact MI–BCI Performance?
Roadmap

- Part I - Understanding Influential Factors
 - Spatial Abilities (SA)

- Part II - Improving Proposing a Solution
 - SA Training:

- Part III - Prospects - Ideas for Future Work
 - Application: Stroke Rehabilitation?

How Do Cognitive Factors Impact MI–BCI Performance?

How Does Personality Impact MI–BCI Performance?

How Does Standard Feedback Impact MI–BCI Performance?

Emilie Jahanpour
Alison Cellard
Feedback

– Part I – Influential Factors
Feedback

- Part I – Influential Factors

Around 17% of the participants did not manage to learn.
Feedback

Part I – Influential Factors

Performance obtained at the motor tasks per participant & per run.

[Jeunet et al. (2016) – J. Neural Engineering]
How Does Standard Feedback Impact MI-BCI Performance?

How Does Personality Impact MI-BCI Performance?

- Tension, self-reliance, abstractedness, learning style.

- Learning Companion: PEANUT:

- Improvement: Cognitive Support

How Do Cognitive Factors Impact MI-BCI Performance?

- Spatial Abilities (SA)

- SA Training:

- Application: Stroke Rehabilitation?

Roadmap

- Part I: Understanding Influential Factors
- Part II: Improving Proposing a Solution
- Part III: Prospects – Ideas for Future Work
Roadmap

- **Part I** – Understanding Influential Factors
 - **How Do Cognitive Factors Impact MI–BCI Performance?**
 - Spatial Abilities (SA)
- **Part II** – Improving Proposing a Solution
 - **SA Training:** Application: Stroke Rehabilitation?
 - **Learning Companion:** PEANUT:
- **Part III** – Prospects – Ideas for Future Work
 - **Improvement:** Cognitive Support

How Does Standard Feedback Impact MI–BCI Performance?

- Feedback requires many cognitive resources to be processed.
Roadmap

<table>
<thead>
<tr>
<th>Part I - Understanding Influential Factors</th>
<th>How Do Cognitive Factors Impact MI-BCI Performance?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▼ Spatial Abilities (SA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II - Improving Proposing a Solution</th>
<th>How Does Personality Impact MI-BCI Performance?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▼ Tension, self-reliance, abstractedness, learning style</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III - Prospects - Ideas for Future Work</th>
<th>How Does Standard Feedback Impact MI-BCI Performance?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▼ Feedback requires many cognitive resources to be processed</td>
</tr>
</tbody>
</table>

Chi Tinh Vi
Daniel Spelmezan
Feedback

- Part II – Proposing a solution

Tactile feedback requires less cognitive resources than an equivalent visual feedback in a BCI context (i.e., where the visual channel is overtaxed), thus resulting in a better acquisition of MI–BCI skills & better performances at side tasks.
Proposed Vibrotactile Glove

We present a glove with vibrotactile actuators which gives users continuous tactile feedback at the palm.
Feedback

- Part II – Proposing a solution

Tactile feedback requires less cognitive resources than an equivalent visual feedback in a BCI context (i.e., where the visual channel is overtaxed), thus resulting in a better acquisition of MI–BCI skills & better performances at side tasks.

[Jeunet et al. (2015) – Interact]
How Does Standard Feedback Impact MI–BCI Performance?

Feedback requires many cognitive resources to be processed.

How Does Personality Impact MI–BCI Performance?

Tension, self-reliance, abstractedness, learning style.

How Do Cognitive Factors Impact MI–BCI Performance?

Spatial Abilities (SA)

SA Training:

Application: Stroke Rehabilitation?

Improvement: Cognitive Support

Roadmap

Part I – Understanding Influential Factors

Part II – Improving Proposing a Solution

Part III – Prospects – Ideas for Future Work

Chi Tahn Vi

Daniel Spelmezan
Roadmap

<table>
<thead>
<tr>
<th>How Do Cognitive Factors Impact MI–BCI Performance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ Spatial Abilities (SA) ▼ GA Training:</td>
</tr>
<tr>
<td>▼ Application: Stroke Rehabilitation?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How Does Personality Impact MI–BCI Performance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ Tension, self-reliance, abstractedness, learning style</td>
</tr>
<tr>
<td>▼ Learning Companion: PEANUT:</td>
</tr>
<tr>
<td>▼ Improvement: Cognitive Support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How Does Standard Feedback Impact MI–BCI Performance?</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼ Feedback requires many cognitive resources to be processed.</td>
</tr>
<tr>
<td>▼ Tactile Feedback:</td>
</tr>
</tbody>
</table>

Understanding Influential Factors

- Part I - Understanding Influential Factors
 - **How Do Cognitive Factors Impact MI–BCI Performance?**
 - Spatial Abilities (SA)
 - GA Training:
 - Application: Stroke Rehabilitation?
 - **How Does Personality Impact MI–BCI Performance?**
 - Tension, self-reliance, abstractedness, learning style
 - Learning Companion: PEANUT
 - Improvement: Cognitive Support

Improving Proposing a Solution

- Part II - Improving Proposing a Solution
 - **How Does Standard Feedback Impact MI–BCI Performance?**
 - Feedback requires many cognitive resources to be processed.
 - Tactile Feedback:

Prospects - Ideas for Future Work

- Part III - Prospects - Ideas for Future Work
Roadmap

- Part I – Understanding Influential Factors
 - How Do Cognitive Factors Impact MI–BCI Performance?
 - Spatial Abilities (SA)
- Part II – Improving Proposing a Solution
 - Spatial Abilities (SA)
 - SA Training:
 - Learning Companion: PEANUT:
 - Application: Stroke Rehabilitation?
 - Improvement: Cognitive Support
- Part III – Prospects – Ideas for Future Work
 - How Does Personality Impact MI–BCI Performance?
 - Tension, self-reliance, abstractedness, learning style
 - How Does Standard Feedback Impact MI–BCI Performance?
 - Feedback requires much cognitive resources to be processed
 - Tactile Feedback:
Feedback

– Part III – Prospects: Why is tactile feedback efficient?

H1 //
It requires fewer cognitive resources to be processed.

H2 //
Vibrations on the hands trigger the motor cortex.

H3 //
Tactile feedback is associated with a better sense of agency.

[Jeunet et al. (2016) – Progress in Brain Research]
Roadmap

- Part I – Understanding Influential Factors
 - How Do Cognitive Factors Impact MI–BCI Performance?
 - Spatial Abilities (SA)
- Part II – Improving Proposing a Solution
 - How Does Personality Impact MI–BCI Performance?
 - Tension, self-reliance, abstractedness, learning style
 - Learning Companion: PEANUT
 - Application: Stroke Rehabilitation?
 - Improvement: Cognitive Support
- Part III – Prospects – Ideas for Future Work
 - How Does Standard Feedback Impact MI–BCI Performance?
 - Feedback requires much cognitive resources to be processed
 - Tactile Feedback
How Does Standard Feedback Impact MI–BCI Performance?

- Feedback requires many cognitive resources to be processed.

- Tactile Feedback:
 - Neurophysiological correlates of tactile feedback efficiency

How Does Personality Impact MI–BCI Performance?

- Tension, self-reliance, abstractedness, learning style.

- Learning Companion: PEANUT:
 - Improvement: Cognitive Support

How Do Cognitive Factors Impact MI–BCI Performance?

- Spatial Abilities (SA)
 - SA Training:

- Application: Stroke Rehabilitation?

- Improvement: Cognitive Support

Roadmap

- Part I – Understanding Influential Factors
- Part II – Improving Proposing a Solution
- Part III – Prospects – Ideas for Future Work
Roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>How Do Cognitive Factors Impact MI–BCI Performance?</td>
<td>How Does Personality Impact MI–BCI Performance?</td>
<td>How Does Standard Feedback Impact MI–BCI Performance?</td>
</tr>
<tr>
<td>▼ Spatial Abilities (SA)</td>
<td>▼ Tension, self-reliance, abstractedness, learning style.</td>
<td>▼ Feedback requires many cognitive resources to be processed.</td>
</tr>
<tr>
<td>▼ SA Training: </td>
<td>▼ Learning Companion: PEANUT: </td>
<td>▼ Tactile Feedback: </td>
</tr>
</tbody>
</table>

How Do Cognitive Factors Impact MI–BCI Performance?

- Spatial Abilities (SA)

How Does Personality Impact MI–BCI Performance?

- Tension, self-reliance, abstractedness, learning style.

How Does Standard Feedback Impact MI–BCI Performance?

- Feedback requires many cognitive resources to be processed.
Discussion – Limits

- Need for...
 - New measures of performance
 - A multi-factorial approach of user-training
 - A Model of the skills to be acquired
PERFORMANCE: Classification Accuracy
PERFORMANCE: Classification Accuracy

Mental Rotation score

Spatial Abilities

PERFORMANCE: Classification Accuracy
Spatial Abilities

- Spatial Training
 - Kinaesthetic Imagination Score
 - Mental Rotation Score
 - Visual-Motor Imagination Score

- Abstractness
- Visual-Motor Coordination
- Active Learning
- Spatial Abilities

Mu

PERFORMANCE: Classification Accuracy
PERFORMANCE: Classification Accuracy

// User–Technology Relationship

Self Reliance
Computer Anxiety
Self–Efficacy
Mastery Confidence
Perceived difficulty
Sense of Agency
Tension / Anxiety
Worry about perf.

// Spatial Abilities

Video Games
Spatial Ability Training
Cognitive Support

Kinaesthetic Imagination Score
Mental Rotation score
Visual–Motor Imagination Score

Abstracted ness
Visual–Motor Coordination
Active Learning

Spatial Abilities

Mu
PERFORMANCE: Classification Accuracy

User–Technology Relationship

- Positively Biased Feedback
- Transparent Mapping
- Priority, Consistency & Exclusivity Principles
- Social Presence & Emotional Support
- Computer Anxiety
- Mastery Confidence
- Perceived difficulty
- Sense of Agency
- Tension / Anxiety
- Worry about perf.
- Self Reliance
- Self-Efficacy

Spatial Abilities

- Video Games
- Spatial Ability Training
- Cognitive Support
- Kinaesthetic Imagination Score
- Mental Rotation score
- Visual–Motor Imagination Score
- Abstracted ness
- Visual–Motor Coordination
- Active Learning
- Spatial Abilities
- Mu
- Spatial Abilities

Positive Bias

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Video Games

Cognitive Support

Kinaesthetic Imagination

Mental Rotation

Visual–Motor Imagination

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu
COGNITIVE MODEL OF MI–BCI TASKS

Perceived difficulty

Sense of Agency

Mastery Confidence

Computer Anxiety

Worry about perf.

Tension / Anxiety

Self Reliance

Self-Efficacy

Positively Biased Feedback

Transparent Mapping

Priority, Consistency & Exclusivity Principles

Social Presence & Emotional Support

Adaptive Difficulty

Meditation

Attentional Neuro-feedback

Video Games

Spatial Ability Training

Cognitive Support

Kinaesthetic Imagination Score

Mental Rotation score

Visual–Motor Imagination Score

Abstractedness

Visual–Motor Coordination

Active Learning

Spatial Abilities

Mu

Gamma

Attentional Abilities

Focused Attention

Motivation

Tiredness

Mood

PERFORMANCE: Classification Accuracy
Post-Doc Project

Using Brain–Computer Interfaces as a Tool to Improve Athletes’ Performance.
Object of the Project EEG & Sport

Brain–Computer Interfaces for the Analysis and Training of Athletes’ Performance.
Object of the Project EEG & Sport

Brain–Computer Interfaces for the Analysis and Training of Athletes’ Performance.
Object of the Project EEG & Sport

Brain–Computer Interfaces for the Analysis and Training of Athletes’ Performance.

[Biomechanics] [Physiology]
Object of the Project EEG & Sport

Brain–Computer Interfaces for the Analysis and Training of Athletes’ Performance.

- Biomechanics
- Physiology
- Social
- Cognitive
- Psychological
- Neurophysiological
Object of the Project EEG & Sport

Brain–Computer Interfaces for the Analysis and Training of Athletes’ Performance.
First Study

OBJECT –
Evaluate the effect of competition on performance & on neurophysiological activity.

METHODS –
Virtual Reality Environment Training vs. Competition

[Pereira et al. – Submitted]
First Study

RESULTS –
First Study

RESULTS –

Difference between Training & Competition

B) μ power difference

$r^2 = 69\% \; p = 0.015$
Objectives of the Post-Doc

Use EEG as a Tool to Improve Athletes’ Performance…

- To find markers of performance
- Study their relationship with the performance
- Train the athletes based on these markers
- Test the training on different sports & professionals
Objectives of the Post-Doc

Use EEG as a Tool to Improve Athletes’ Performance...

[Covert Attention Neurofeedback Training]
Objectives of the Post-Doc

Use EEG as a Tool to Improve Athletes’ Performance

[Covert Attention Neurofeedback Training]

[Ecological Motor–Imagery Training]
THANK YOU!

Using Brain–Computer Interfaces as a Tool to Improve Athletes’ Performance.

Post-Doc in Collaboration with ——
Anatole Lécuyer, Ferran Argelaguet – Inria
Benoît Bideau, Richard Kulpa – Univ. Rennes II / ENS
Jose del R. Millán, Ricardo Chavarriaga – EPFL

Camille Jeunet

Workshop of the EPFL–Inria International Lab ——
2017–02–07