New Algorithms for Static Analysis via Dyck Reachability

Andreas Pavlogiannis

4th Inria/EPFL Workshop

February 15, 2018
- Does it crash?
- Is it efficient?
- Does it leak information?
- Is it safe?
- Is it responsive?
Program analysis is hard
All non-trivial problems undecidable
Relax . . .
Program analysis is hard
All non-trivial problems undecidable
Relax . . .
 . . . your ambitions
 . . . your model
Static Analysis

- Program analysis is hard
- All non-trivial problems undecidable
- Relax . . .
 - . . . your ambitions
 - . . . your model

Static analysis
- Lightweight, “clever” scans of the program
- Detect “obvious” bugs
 1. Fast
 2. On demand
 3. Dynamic
Static Analysis via Dyck Reachability
\[\Sigma = \{ (1,)_1, \ldots , (k,)_k \} \cup \{ \epsilon \} \]

\[S \rightarrow SS \mid (1S)_1 \mid \ldots \mid (kS)_k \mid \epsilon \]

\[G = (V, E, \lambda : E \rightarrow \Sigma) \]

\[P : x \Rightarrow z \text{ with } \lambda(P) = (1(2)2)1 \]

Dyck Reachability

A. Pavlogiannis

New Algorithms for Static Analysis via Dyck Reachability
\[\Sigma = \{(1,)_1, \cdots (k,)_k\} \cup \{\epsilon\} \]

\[G = (V, E, \lambda : E \to \Sigma) \]

\[S \to S \; S \; | \; (1 \; S) \;_1 \; | \; \cdots \; |\; (k \; S) \;_k \; | \; \epsilon \]

\[P : x \rightsquigarrow z \; \text{with} \; \lambda(P) = (1(2)2)_1 \]
\[\Sigma = \{ (1,)_1, \ldots, (k,)_k \} \cup \{ \epsilon \} \]

\[G = (V, E, \lambda : E \rightarrow \Sigma) \]

\[S \rightarrow SS \mid (1 \; S \;)_1 \mid \ldots \mid (k \; S \;)_k \mid \epsilon \]

\[P : x \leadsto z \; \text{with} \; \lambda(P) = (1(2)_2)_1 \]

- Alias analysis
- Data-dependence analysis
- Data-flow analysis
- Shape analysis
- Impact analysis
- Bloat analysis
- Type-based flow analysis
- Program slicing
Q: Is \(v \) Dyck-reachable from \(u \)?

- Dyck languages are a class of CFL
- Solution similar to CYK for CFL parsing
- \(O(n^3) \) [Yannakakis '90]
- \(O(n^3 / \log n) \) [Chaudhuri '08]
- Often prohibitive for lightweight static analysis
Q: Is \(v \) Dyck-reachable from \(u \)?

- Dyck languages are a class of CFL
- Solution similar to CYK for CFL parsing
- \(O(n^3) \) [Yannakakis '90]
- \(O(n^3 / \log n) \) [Chaudhuri '08]
- Often prohibitive for lightweight static analysis

Can do better if the graph is simple!

1. Low treewidth
2. Bidirected
Static Analysis

- Analyze source code without executing it

Typical paradigm in static analysis: reduce the problem to a graph problem P:

Input: A program of methods M_i

1. Extract control flow graphs G_i
2. Annotate G_i
3. Run best graph algorithm for P on G

Data-dependence analysis
Which variable depends on which others
Identify Def-Use chains in a program
$LHS \text{ depends on } RHS$

$x \leftarrow y \leftarrow x + 1$

$y \text{ depends on } x$ if $x \Rightarrow y$
Static Analysis

- Analyze source code without executing it

 Typical paradigm in static analysis: reduce the problem to a graph problem P:
 Input: A program of methods M_i
 1. Extract control flow graphs G_i
 2. Annotate G_i
 3. Run best graph algorithm for P on G

Data-dependence analysis
- Which variable depends on which others
- Identify Def-Use chains in a program
- LHS depends on RHS
Static Analysis

- Analyze source code without executing it

Typical paradigm in static analysis: reduce the problem to a graph problem P:
Input: A program of methods M_i

1. Extract control flow graphs G_i
2. Annotate G_i
3. Run best graph algorithm for P on G

Data-dependence analysis
- Which variable depends on which others
- Identify Def-Use chains in a program
- LHS depends on RHS
 y depends on x if $x \leadsto y$

\[
\begin{align*}
1 & \quad x \leftarrow 2 \\
2 & \quad y \leftarrow x + 1
\end{align*}
\]
Method 1: \texttt{dot_vector}

1. \texttt{result} $\leftarrow 0$
2. \texttt{for $i \leftarrow 1$ to n do}
3. \hspace{1em} $z \leftarrow x[i] \cdot y[i]$
4. \hspace{1em} \texttt{result} $\leftarrow \texttt{result} + z$
5. \texttt{end}
6. \texttt{return result}

Method 2: \texttt{dot_matrix}

1. $C \leftarrow \text{zero matrix of size } n \times m$
2. \texttt{for $i \leftarrow 1$ to n do}
3. \hspace{1em} \texttt{for $j \leftarrow 1$ to m do}
4. \hspace{2em} \text{Call \texttt{dot_vector}(A[i,:], B[:,j])}
5. \hspace{2em} $C[i,j] \leftarrow$ the value returned by the call of line 4
6. \texttt{end}
7. \texttt{end}
8. \texttt{return } C
Inter-procedural → Recursive Graphs

Method 1: $f_1()$
1 ...
2 $a \leftarrow g()$
3 ...

Method 2: $f_2()$
1 ...
2 $b \leftarrow g()$
3 ...

Method 3: $g()$
1 ...

Filter out interprocedurally invalid paths
Inter-procedural → Recursive Graphs

Method 1: $f_1()$

1 \[\ldots\]
2 $a \leftarrow g()$
3 \[\ldots\]

Method 3: $g()$

1 \[\ldots\]
2 $b \leftarrow g()$
3 \[\ldots\]

Method 2: $f_2()$

1 \[\ldots\]

Filter out interprocedurally invalid paths
Method 4: dot_vector

1. \(\text{result} \leftarrow 0 \)
2. \(\text{for } i \leftarrow 1 \text{ to } n \text{ do} \)
3. \(z \leftarrow x[i] \cdot y[i] \)
4. \(\text{result} \leftarrow \text{result} + z \)
5. \(\text{end} \)
6. \(\text{return } \text{result} \)

Method 5: dot_matrix

1. \(C \leftarrow \text{zero matrix of size } n \times m \)
2. \(\text{for } i \leftarrow 1 \text{ to } n \text{ do} \)
3. \(\text{for } j \leftarrow 1 \text{ to } m \text{ do} \)
4. \(\text{Call } \text{dot_vector}(A[i, :], B[:, j]) \)
5. \(C[i, j] \leftarrow \text{the value returned by the call of line 4} \)
6. \(\text{end} \)
7. \(\text{end} \)
8. \(\text{return } C \)
Control-flow graphs are simple
“Similar to trees”
Precise notion: treewidth
Treewidth
Cops and Robber

- You enter the metro and “forget” to buy a ticket
- \(t \) inspectors are looking for you in the metro stations
- Everyone is aware of everyone else’s position
Cops and Robber

- You enter the metro and “forget” to buy a ticket
- t inspectors are looking for you in the metro stations
- Everyone is aware of everyone else’s position
- In every round
 - Some inspectors move between stations to reach you
 - You use the metro system to move between stations
 - You cannot cross an occupied station
You enter the metro and “forget” to buy a ticket

\(t \) inspectors are looking for you in the metro stations

Everyone is aware of everyone else’s position

In every round

- Some inspectors move between stations to reach you
- You use the metro system to move between stations
- You cannot cross an occupied station

The **treewidth** of the metro graph is the largest \(t \) from which you can always escape
Definition (Tree decomposition)

Given a graph $G = (V, E)$, a **tree-decomposition** $\text{Tree}(G) = (V_T, E_T)$ is a tree of bags $B_i \subseteq V$.

G

![Graph G](image)

$\text{Tree}(G)$

![Tree of bags](image)
Definition (Treewidth)

The width of $\text{Tree}(G)$ is $\max_i |B_i| - 1$. The treewidth of G is the minimum width of a tree decomposition of G.

![Diagram of G and Tree(G)]
Definition (Treewidth)

The width of $\text{Tree}(G)$ is $\max_i |B_i| - 1$. The treewidth of G is the minimum width of a tree decomposition of G.

CFGs of typical imperative programs have small treewidth

- For goto-free programs [Thorup '98]
 - Pascal ≤ 3
 - C ≤ 6
- In practice small in imperative programs (e.g. Java ≤ 7)
Definition (Treewidth)

The width of $\text{Tree}(G)$ is $\max_i |B_i| - 1$. The treewidth of G is the minimum width of a tree decomposition of G.

CFGs of typical imperative programs have small treewidth

- For goto-free programs [Thorup ’98]
 - Pascal ≤ 3
 - C ≤ 6
- In practice small in imperative programs (e.g. Java ≤ 7)

Theorem (Tree decomposition)

For constant treewidth graphs, $\text{Tree}(G)$ can be constructed in $O(n)$ time
Algorithmic Principle

1. Reachability ignoring parenthesis edges
2. If Entry \leadsto Exit
 - Insert summary edge

Graph:

$$G_h$$

$$G_g$$

$$G_f$$

Nodes: 1, 2, 3, 4, 5, 6, 7, 8

Edges:
- (1) from 1 to 3
- (2) from 2 to 8
- (1) from 3 to 4
- (2) from 4 to 7
- (1) from 5 to 6
- (1) from 6 to 7
- (2) from 7 to 8

Most time spent in (1)
Incremental reachability
Low treewidth
Algorithmic Principle

1. Reachability ignoring parenthesis edges
2. If Entry \leadsto Exit
 - Insert summary edge

Graphical representation:

G_h
G_g
G_f
1. Reachability ignoring parenthesis edges

2. If Entry \leadsto Exit
 - Insert summary edge
1. Reachability ignoring parenthesis edges

2. If Entry \sim Exit
 - Insert summary edge
1. Reachability ignoring parenthesis edges
2. If Entry \leadsto Exit
 - Insert summary edge
1. Reachability ignoring parenthesis edges
2. If Entry ⇝ Exit
 - Insert summary edge
1. Reachability ignoring parenthesis edges
2. If Entry ⇝ Exit
 - Insert summary edge

- Most time spent in (1)
- Incremental reachability
- Low treewidth
Reachability on low-treewidth graphs
Given a graph $G = (V, E)$ of n nodes and bounded treewidth

<table>
<thead>
<tr>
<th>Preprocessing time</th>
<th>Space</th>
<th>Pair query time</th>
<th>Single-source query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O \left(\frac{n^2}{\log n} \right)$</td>
<td>$O \left(\frac{n^2}{\log n} \right)$</td>
<td>$O(1)$</td>
<td>$O \left(\frac{n}{\log n} \right)$</td>
</tr>
<tr>
<td>$O(n \cdot \log n)$</td>
<td>$O(n \cdot \log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O \left(\frac{n}{\log n} \right)$</td>
</tr>
</tbody>
</table>

- Optimal
- Faster than DFS/BFS after a constant number of queries
Given a graph $G = (V, E)$ of n nodes and bounded treewidth

<table>
<thead>
<tr>
<th>Preprocessing time</th>
<th>Space</th>
<th>Pair query time</th>
<th>Single-source query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O\left(\frac{n^2}{\log n}\right)$</td>
<td>$O\left(\frac{n^2}{\log n}\right)$</td>
<td>$O(1)$</td>
<td>$O\left(\frac{n}{\log n}\right)$</td>
</tr>
<tr>
<td>$O(n \cdot \log n)$</td>
<td>$O(n \cdot \log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O\left(\frac{n}{\log n}\right)$</td>
</tr>
</tbody>
</table>

- Optimal
- Faster than DFS/BFS after a constant number of queries
Given a graph $G = (V, E)$ of n nodes and bounded treewidth.

<table>
<thead>
<tr>
<th>Preprocessing time</th>
<th>Space</th>
<th>Pair query time</th>
<th>Single-source query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O\left(\frac{n^2}{\log n}\right)$</td>
<td>$O\left(\frac{n^2}{\log n}\right)$</td>
<td>$O(1)$</td>
<td>$O\left(\frac{n}{\log n}\right)$</td>
</tr>
<tr>
<td>$O(n \cdot \log n)$</td>
<td>$O(n \cdot \log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O\left(\frac{n}{\log n}\right)$</td>
</tr>
</tbody>
</table>

- Optimal
- Faster than DFS/BFS after a constant number of queries
Given a graph $G = (V, E)$ of n nodes and bounded treewidth

<table>
<thead>
<tr>
<th>Preprocessing time</th>
<th>Space</th>
<th>Pair query time</th>
<th>Single-source query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O\left(\frac{n^2}{\log n}\right)$</td>
<td>$O\left(\frac{n^2}{\log n}\right)$</td>
<td>$O(1)$</td>
<td>$O\left(\frac{n}{\log n}\right)$</td>
</tr>
<tr>
<td>$O(n \cdot \log n)$</td>
<td>$O(n \cdot \log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O\left(\frac{n}{\log n}\right)$</td>
</tr>
</tbody>
</table>

- Optimal
- Faster than DFS/BFS after a constant number of queries
Given a graph $G = (V, E)$ of n nodes and bounded treewidth

<table>
<thead>
<tr>
<th>Preprocessing time</th>
<th>Space</th>
<th>Pair query time</th>
<th>Single-source query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$- O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O\left(\frac{n^2}{\log n}\right)$</td>
<td>$O\left(\frac{n^2}{\log n}\right)$</td>
<td>$O(1)$</td>
<td>$O\left(\frac{n}{\log n}\right)$</td>
</tr>
<tr>
<td>$O(n \cdot \log n)$</td>
<td>$O(n \cdot \log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O\left(\frac{n}{\log n}\right)$</td>
</tr>
</tbody>
</table>

- Optimal
- Faster than DFS/BFS after a constant number of queries
Interprocedural Dataflow Analysis on Recursive Graphs of Low Treewidth
Interprocedural Dataflow Analysis

Input:
- Recursive graph G with n nodes
- Finite graphs G_i of n_i nodes and bounded treewidth
 - Every G_i has a unique entry and exit

Theorem (POPL'15)
For low-treewidth graphs we construct dynamic reachability oracles:
- Preprocess G_i in $O(n_i \cdot |D|^3)$ time
- Query for the distance $d(u, v)$ in $O(|D|^3 \cdot \log n_i)$ time
- Update the weight of an edge (u, v) in $O(|D|^3 \cdot \log n_i)$ time
Interprocedural Dataflow Analysis

Input:
- Recursive graph G with n nodes
- Finite graphs G_i of n_i nodes and bounded treewidth
 - Every G_i has a unique entry and exit
- D data fact set
 - e.g. “variable x is uninitialized”, “variable y is constant”
- Weighted graph
- Semiring distance on lattice over D
Interprocedural Dataflow Analysis

Input:
- Recursive graph G with n nodes
- Finite graphs G_i of n_i nodes and bounded treewidth
 - Every G_i has a unique entry and exit
- D data fact set
 - e.g. “variable x is uninitialized”, “variable y is constant”
- Weighted graph
- Semiring distance on lattice over D

Theorem (POPL’15)

For low-treewidth graphs we construct dynamic reachability oracles:
- **Preprocess** G_i in $O(n_i \cdot |D|^3)$ time
- **Query** for the distance $d(u, v)$ in $O(|D|^3 \cdot \log n_i)$ time
- **Update** the weight of an edge (u, v) in $O(|D^3| \cdot \log n_i)$ time
Interprocedural Dataflow Analysis
Interprocedural Dataflow Analysis

0 \rightarrow G_1 \rightarrow G_2 \rightarrow \ldots \rightarrow G_k

Preprocess Preprocess Preprocess
Interprocedural Dataflow Analysis

0

\[G_1 \quad G_2 \quad \ldots \quad G_k \]

1

\[G_1 \quad G_2 \quad \ldots \quad G_k \]
Interprocedural Dataflow Analysis

Query \(d(En_1, Ex_1) \)

Query \(d(En_i, Ex_i) \)
Interprocedural Dataflow Analysis

Query $d(En_1, Ex_1)$

Update $wt_2(C, R)$
Interprocedural Dataflow Analysis

\[G_1 \quad G_2 \quad \cdots \quad G_k \]

\[G_1 \quad G_2 \quad \cdots \quad G_k \]

\[G_1 \quad G_2 \quad \cdots \quad G_k \]
Interprocedural Dataflow Analysis

<table>
<thead>
<tr>
<th></th>
<th>G_1</th>
<th>G_2</th>
<th>...</th>
<th>G_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Query $d(u, v)$ in $O(\log n_2)$
Interprocedural Dataflow Analysis

A. Pavlogiannis

New Algorithms for Static Analysis via Dyck Reachability 21
Input graph with n nodes, D data fact set, $|D| = \Omega(\log n)$

<table>
<thead>
<tr>
<th></th>
<th>Preprocessing time</th>
<th>Space</th>
<th>Query Single-source</th>
<th>Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>No preprocessing</td>
<td>-</td>
<td>$O(n \cdot</td>
<td>D</td>
<td>^2)$</td>
</tr>
<tr>
<td>Complete preprocessing</td>
<td>$O(n^2 \cdot</td>
<td>D</td>
<td>^3)$</td>
<td>$O(n^2 \cdot</td>
</tr>
<tr>
<td>Ours</td>
<td>$O(n \cdot</td>
<td>D</td>
<td>^3)$</td>
<td>$O(n</td>
</tr>
</tbody>
</table>
Dataflow Analysis [POPL’15]

Input graph with n nodes, D data fact set, $|D| = \Omega(\log n)$

<table>
<thead>
<tr>
<th></th>
<th>Preprocessing time</th>
<th>Space</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single-source</td>
</tr>
<tr>
<td>No preprocessing</td>
<td>-</td>
<td>$O(n \cdot</td>
<td>D</td>
</tr>
<tr>
<td>Complete preprocessing</td>
<td>$O(n^2 \cdot</td>
<td>D</td>
<td>^3)$</td>
</tr>
<tr>
<td>Ours</td>
<td>$O(n \cdot</td>
<td>D</td>
<td>^3)$</td>
</tr>
</tbody>
</table>
Dyck Reachability on Bidirected Graphs
∀u, v ∈ V : λ(u, v) = (i) ⇔ λ(v, u) =)i
Bidirected graphs

\[\forall u, v \in V : \lambda(u, v) = (i) \iff \lambda(v, u) =)i \]

- Demand-driven field-sensitive alias analysis
- [YXR, ISSTA '11] [ZLYS, PLDI '13]
Theorem (ZLYS ’13)

Dyck reachability on bidirected graphs is an equivalence relation.
Reachability is Equivalence

Theorem (ZLYS '13)

Dyck reachability on bidirected graphs is an equivalence relation.
Reachability is Equivalence

Theorem (ZLYS '13)

Dyck reachability on bidirected graphs is an equivalence relation.
Graphs of n nodes, $\alpha(n)$ the inverse Ackermann

<table>
<thead>
<tr>
<th>Source</th>
<th>Worst-case Time</th>
<th>Average-case Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ZLYS '13]</td>
<td>$O(n^2)$</td>
<td>$O(n \cdot \log n)$</td>
</tr>
<tr>
<td>Our Result</td>
<td>$O(n \cdot \alpha(n))$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Graphs of n nodes, $\alpha(n)$ the inverse Ackermann

<table>
<thead>
<tr>
<th>Source</th>
<th>Worst-case Time</th>
<th>Average-case Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ZLYS '13]</td>
<td>$O(n^2)$</td>
<td>$O(n \cdot \log n)$</td>
</tr>
<tr>
<td>Our Result</td>
<td>$O(n \cdot \alpha(n))$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

optimal! optimal!
Hardness?
$O(n^3)$
- 2NPDA-hard
 - Conditional cubic lower bound
- $O(n^3)$
- 2NPDA-hard
 - Conditional cubic lower bound

Theorem

Dyck reachability is Boolean Matrix Multiplication - hard.
Complexity of Dyck Reachability [POPL’18]

- $O(n^3)$
- 2NPDA-hard
 - Conditional cubic lower bound

Theorem

Dyck reachability is Boolean Matrix Multiplication - hard.
Complexity of Dyck Reachability [POPL’18]

- $O(n^3)$
- 2NPDA-hard
 - Conditional cubic lower bound

Theorem

Dyck reachability on low-treewidth graphs is Boolean Matrix Multiplication - hard.

Can we do $O(n^3 / \log^2 n)$?
Theorem

Dyck reachability on constant-treewidth, bidirected graphs requires \(\Omega(n \cdot \alpha(n)) \) time.
Complexity on Bidirected Graphs [POPL’18]

Theorem

Dyck reachability on constant-treewidth, bidirected graphs requires $\Omega(n \cdot \alpha(n))$ time.

Compare with

Theorem (ZLYZ ’13)

Dyck reachability on bidirected trees solvable in $O(n)$ time.

Typically complexity on low-treewidth graphs = complexity on trees
Implementation & Experiments

Alias Analysis
Implementation in C++
Compared with [ZLYS, PLDI '13]
DaCapo-2006 benchmarks
SPGs from [YXR, ISSTA '11]

Data-dependence Analysis
Implementation in Java
Compared with TAL reachability [TWZXZM, POPL '15]

Benchmarks:
SPECjvm2008
4 randomly chosen GitHub projects
Alias Analysis

- Implementation in C++
- Compared with [ZLYS, PLDI ’13]
- DaCapo-2006 benchmarks
- SPGs from [YXR, ISSTA ’11]
Implementation & Experiments

Alias Analysis
- Implementation in C++
- Compared with [ZLYS, PLDI '13]
- DaCapo-2006 benchmarks
- SPGs from [YXR, ISSTA '11]

Data-dependence Analysis
- Implementation in Java
- Compared with TAL reachability [TWZXZM, POPL '15]
- Benchmarks:
 - SPECjvm2008
 - 4 randomly chosen GitHub projects
Time-usage comparison (ms)

<table>
<thead>
<tr>
<th>Tool</th>
<th>Our Algorithm</th>
<th>Existing</th>
</tr>
</thead>
<tbody>
<tr>
<td>antlr</td>
<td>1341</td>
<td>34601</td>
</tr>
<tr>
<td>bloat</td>
<td>34910</td>
<td>34910</td>
</tr>
<tr>
<td>chart</td>
<td>12769</td>
<td>148034</td>
</tr>
<tr>
<td>eclipse</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>fop</td>
<td>55331</td>
<td>636</td>
</tr>
<tr>
<td>hsqldb</td>
<td>1127</td>
<td>1127</td>
</tr>
<tr>
<td>jython</td>
<td>8923</td>
<td>45</td>
</tr>
<tr>
<td>luindex</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>lusearch</td>
<td>1341</td>
<td>34601</td>
</tr>
<tr>
<td>pmd</td>
<td>34910</td>
<td>34910</td>
</tr>
<tr>
<td>xalan</td>
<td>12769</td>
<td>148034</td>
</tr>
</tbody>
</table>

Our Algorithm

Existing
Data-dependence Analysis

Time-usage comparison (ms)

Library (preprocessing)

Client

Our Algorithm
TAL
CFL

A. Pavlogiannis
New Algorithms for Static Analysis via Dyck Reachability

Data-dependence Analysis

Time-usage comparison (ms)

Library (preprocessing)

- helloworld
- check
- compiler
- sample
- crypto
- derby
- mpegaudio
- xml
- mushroom
- btree
- startup
- sunflow
- compress
- parser
- scimark

Our Algorithm
TAL
CFL

Client

- helloworld
- check
- compiler
- sample
- crypto
- derby
- mpegaudio
- xml
- mushroom
- btree
- startup
- sunflow
- compress
- parser
- scimark

Our Algorithm
TAL
Data-dependence Analysis

Space-usage comparison (MB)

Library (preprocessing)

<table>
<thead>
<tr>
<th>Library</th>
<th>Our Algorithm</th>
<th>TAL</th>
<th>CFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HelloWorld</td>
<td>321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check</td>
<td>336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compiler</td>
<td>329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crypto</td>
<td>261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derby</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MpegAudio</td>
<td>516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xml</td>
<td>463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mushroom</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTree</td>
<td>308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Startup</td>
<td>345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunflow</td>
<td>315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compress</td>
<td>338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parser</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scimark</td>
<td>134</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Pavlogiannis
New Algorithms for Static Analysis via Dyck Reachability
Data-dependence Analysis

Space-usage comparison (MB)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Library (Lib.)</th>
<th>Clustering (Cl.)</th>
<th>Library (Lib.)</th>
<th>Clustering (Cl.)</th>
<th>Library (Lib.)</th>
<th>Clustering (Cl.)</th>
<th>Library (Lib.)</th>
<th>Clustering (Cl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>serial</td>
<td>69999</td>
<td>468</td>
<td>130</td>
<td>130</td>
<td>>12000</td>
<td>>12000</td>
<td>3964</td>
<td>4314</td>
</tr>
</tbody>
</table>

Library (preprocessing)

<table>
<thead>
<tr>
<th>Library</th>
<th>Our Algorithm</th>
<th>TAL</th>
<th>CFL</th>
</tr>
</thead>
<tbody>
<tr>
<td>hello world</td>
<td>321</td>
<td>336</td>
<td>329</td>
</tr>
<tr>
<td>check</td>
<td>232</td>
<td>600</td>
<td>516</td>
</tr>
<tr>
<td>compiler</td>
<td>261</td>
<td>463</td>
<td>230</td>
</tr>
<tr>
<td>sample</td>
<td>308</td>
<td>345</td>
<td>315</td>
</tr>
<tr>
<td>crypto</td>
<td>338</td>
<td>320</td>
<td>134</td>
</tr>
</tbody>
</table>
Thank you!
Questions?