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(More formal) problem statement

* Train a prediction model on distributed data
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(More formal) problem statement

* Train a prediction model on distributed data

CL/ENT |

BLIENT 71 e
g R / G2 y.)

(Xy,

I HATE THE FRENCH

7 " g VANILLA
e 100 PERCENT ALL-AMERICAN VANILLA ICE CREAM
B
(XS’ 4 3) N —

I STAR SPANGLED [

*x ICE CREAM *

e Server is untrusted

e ==> Vanilla machine learning not ok



Privacy requirement. The server must not be able to
infer the label or any feature value for any individual
client.



4 PROPOSED SOLUTION

The loss function of a binary classification model often takes the
form

1 A
Jw) = ;L(w, xi.yi) + - R(w) (1)

where N denotes the number of users or training samples, x; € R?
the feature vector, y; € {—1, 1} the label of the i-th user, w € R4 the
parameter vector of the model, L the loss for an individual sample,
R a regularization function that is independent from the data, and
A > 0 the regularization parameter. When using a subgradient
method to train the model, the update for dimension j becomes
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a single user. We follow the general three-step process of federated
learning:

(1) The server sends out the current model to the clients.
(2) The clients compute their local updates based on their data
xi,y; and send it back to the server.

(3) The server sums up the individual updates and updates the
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Attack 1: Linkage via IP addresses
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4.2 Attack 2: Identity inference via feature
vectors

i

For linear models, (1) typically becomes

1 . A
J(w) = - ;uyiw xi) + - R(w). (3)

Taking the derivative with respect to dimension j, we get

oJ(w) , A OR(w)
(9WJ N ZL (ylw xl)ylxl] > (9Wj ’ (4)
giving rise to the subgradient update rule
1 ) 9Rw) |
o .« L 5
Wj & Wi N Z (yiw” xi) yixij + - 2 dw,; (5)




4.2 Attack 2: Identity inference via featurr
vectors

i

For linear models, (1) typically becomes

W

can use to prevent this: Not only is the local update fror;:le user
independent from the local updates of the other users, but also the
update for one entry w; does not rely on the update for any other en-

tries. That means we can update each entry individually. We exploit

. — JL(w,x;,y;) OL(w,x;,y;)
this by splitting the update vector ( dw; . 0 Owyg )

up into its individual entries and sending each entry together with
its index as a separate package.

1 ) OR
Wj — Wj — 1) \NZL (y,w Xi) YiXij + — ; (%(v‘j)) (5)




4.3 Attack 3: Package linkage via update values

The method proposed in the last paragraph ensures that no two
updates for different entries of w are sent in the same package.
Nevertheless, there is still the risk of identifying packages belonging
to the same update vector post hoc. When using, e.g., Lo-regularized
logisitic regression, we have L(w, x;, y;) = log(1 + exp(—y;w! x;))
and

OL(w,xi,yi) _ YiXij ©)

Ow;j 1+ exp(yiwTx;)




Attack 3: Package linkage via update values

"Hinge loss™

1. Support vector machines (SVMs)
-2 -1 0 1 2 ave the loss function L(w, xj, y;) =
max{0, 1 — y;iw! x;} with derivative

aL(W, Xi, yi)
ow;j

= 5(1 — yiw! x;) YiXij, (7)

where 0(x) 1s 1 if x > 0 is true, and 0 otherwise. If we restrict
ourselves to binary x;;, we are in the lucky situation that the updates
can only take the values —1, 0 and 1. The case of binary features



Attack 4: Package linkage via timing

group contains all packages from exactly one user. Our solution
to this problem is to set the length of one training iteration to n
seconds. The clients will then not send their packages all at once
but spread them randomly over the n seconds, thereby preventing
any correlation attack based on the arrival time.
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aL(W, xi,y,-)

= 86(1 — yiw! x;) YiXij, (7)

Attack 5: Identity inference via single
features



dL(w, xi,y;)
ow;

= 86(1 — yiw! x;) YiXij, (7)
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Figure 1: The SecVM model in a nutshell. As an initial step, all clients hash their feature vectors into a lower-dimensional
space. Then the training procedure begins. In iteration t, the server sends out the current parameter vector w = w(?) to all
clients. Each client i computes its local update g; = §(1 — y;w’ x;) y;x; and splits this vector into its individual entries g; j. These
entries, together with their indices j, are sent back to the server as individual packages at random points in time via a proxy

network. The server sums up the updates g;; corresponding to the same entry j of the parameter vector and updates the weight
vector w. This procedure is repeated until the parameter vector has converged.
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5 OFFLINE EVALUATION: GENDER
INFERENCE FOR TWITTER USERS

We implemented and tested our approach in a real application with
users connected via the internet, as described in Section 6. However,
to assess its feasibility and to determine suitable hyperparameters,
we first performed a test on an offline dataset. The authors of [6]
generously provided us with their dataset of tweets collected from
nearly 350,000 Twitter users, and demographic data inferred from
their profiles. Around half of the users are labeled as male and half
of them as female.

obtained 95,880,008 distinct words. On the other hand, the feature
vectors are very sparse: The average number of words per user
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Figure 2: Learning curve for offline evaluation on Twitter
gender prediction task (Sec. 5): test-set accuracy as function
of subgradient-descent iteration number. No feature hash-
ing used. We tried various numbers of averaged weight vec-
tors, each shown as one curve.
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Figure 3: Offline evaluation on Twitter gender prediction
task (Sec. 5): accuracy achieved for different numbers of fea-
tures after feature hashing (using as weight vector for pre-
diction the average of last two weight vectors seen during
training; cf. Fig. 2).
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DISCUSSION

* Further use cases?
* Science on sensitive data

* Beyond SYM?
* Neural nets with rectifiers? Binary weights?
* Recommender systems?

e Blockchain for verified truste
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