

Differentiable path tracing for optimising virtual scenes

Guillaume Loubet Wenzel Jakob Nicolas Holzschuch

Inria/EPFL PostDoc Fellowship
EPFL
Inria Grenoble

Photo-realistic rendering

Photo-realistic rendering with Path Tracing

Dawn of the Planet of the Apes, Weta, 2014

Creating realistic virtual scenes

Photo

Rendered with path tracing

- Problem: hard to create realistic virtual scenes, too many parameters
- Can we optimise a virtual scene with photos?

Optimising virtual scenes

Vector of parameters $P = (P_0, P_1 \dots P_N)$

Gradient descent: we need all the $\frac{\partial}{\partial t}$

Difficult to compute
Our job

Monte Carlo Integration

Monte Carlo Integration: $I = \int_D f(x) dx \approx \frac{C}{N} \sum_{i=1}^N f(x_i)$

Monte Carlo samples

$$I = \int f(x) \, \mathrm{d}x \approx \frac{C}{N} \sum f(x_i)$$

$$\frac{\partial I}{\partial P_i} = \frac{\partial}{\partial P_i} \int f(x) \, \mathrm{d}x \approx \frac{C}{N} \sum \frac{\partial f(x_i)}{\partial P_i}$$

Monte Carlo samples

$$I = \int f(x) dx \approx \frac{C}{N} \sum f(x_i)$$

$$= \frac{\partial}{\partial x_i} \int f(x) dx \approx \frac{C}{N} \sum f(x_i)$$

Problem: only if f is differentiable wrt P_i

$$\int_D f(x) dx$$
 is differentiable, but cannot differentiate Monte Carlo estimator

$$\frac{\partial I}{\partial P_i} = \frac{\partial}{\partial P_i} \int f(x) \, \mathrm{d}x \approx \frac{C}{N} \sum_{i=0}^{\infty} \frac{\partial f(x_i)}{\partial P_i}$$

Examples

Previous work

• Approx differentiable renderers [Loper 2014] [Rhodin 2015] [Kato 2018]

• Edge sampling [Li 2018]: first accurate diff. renderer!

Previous work: Edge Sampling [Li 2018]

- Slow, hard to sample important discontinuities
- · We need faster approx. gradients

Takeaways

- Accurate differentiable renderers are useful:
 - Shape optimisation from photos
 - Get reflectance parameters from photos
- Difficult because of:
 - Complexity of physically-based rendering algorithms
 - · Discontinuities in integrals, monte Carlo sampling
- · Idea: new differentiable Monte Carlo estimator