
Towards Fast, Sound and Effective
Predictive Analyses

https://arxiv.org/abs/1901.08857

Andreas Pavlogiannis
Supported by INRIA-EPFL Fellowship

Hosts: Viktor Kunčak (EPFL) and Stephan Merz (INRIA Nancy)

https://arxiv.org/abs/1901.08857

Concurrency Bugs in the Wild

Therac-25

Radiation Therapy Machine

Concurrency bug lead to
radiation overdose (100x)

6 accidents, 3 deaths

Race condition

2 / 24

Concurrency Bugs in the Wild

Northeast Blackout

Power outage in
Northeastern and
Midwestern US, also
Canada

US DoE, estimated cost:
$6B

Contributed to ∼100 deaths

Race condition

3 / 24

Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

Thread 2: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

balance = 8

→ 3→ −2

4 / 24

Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

Thread 2: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

balance = 8

→ 3→ −2

4 / 24

Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

Thread 2: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

balance = 8

→ 3→ −2

4 / 24

Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

Thread 2: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

balance = 8

→ 3→ −2

4 / 24

Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

Thread 2: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

balance = 8

→ 3→ −2

4 / 24

Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

Thread 2: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

balance = 8→ 3

→ −2

4 / 24

Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

Thread 2: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

balance = 8→ 3→ −2

4 / 24

Concurrency Bugs

Thread 1: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

Thread 2: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Withdraw(5)

balance = 8→ 3→ −2

4 / 24

Testing Concurrent Programs is Particularly Difficult

To find a bug we need to solve two problems:

1) Find the right program inputs

2) Find the right schedule

there are exponentially many schedules

Even if we solve 1), problem 2) remains

Goal

For given inputs, find the schedule exhibiting a bug

5 / 24

Outcome of Running a Concurrent Program
(even for fixed inputs)

“Shooting Darts in the Dark”

Buggy
executions

6 / 24

Outcome of Running a Concurrent Program
(even for fixed inputs)

“Shooting Darts in the Dark”

Buggy
executions

6 / 24

Outcome of Running a Concurrent Program
(even for fixed inputs)

“Shooting Darts in the Dark”

Buggy
executions

6 / 24

Outcome of Running a Concurrent Program
(even for fixed inputs)

“Shooting Darts in the Dark”

Buggy
executions

6 / 24

Outcome of Running a Concurrent Program
(even for fixed inputs)

“Shooting Darts in the Dark”

Buggy
executions

6 / 24

Outcome of Running a Concurrent Program
(even for fixed inputs)

“Shooting Darts in the Dark”

Buggy
executions

6 / 24

Predictive Techniques: Darts Get Larger
(Cover Exponentially Many Executions)

Buggy
executions

7 / 24

Predictive Techniques: Darts Get Larger
(Cover Exponentially Many Executions)

Buggy
executions

7 / 24

Predictive Techniques: Darts Get Larger
(Cover Exponentially Many Executions)

Buggy
executions

7 / 24

Predictive Techniques: Darts Get Larger
(Cover Exponentially Many Executions)

Buggy
executions

7 / 24

Predictive Techniques: Darts Get Larger
(Cover Exponentially Many Executions)

Buggy
executions

7 / 24

Predictive Techniques: Darts Get Larger
(Cover Exponentially Many Executions)

Buggy
executions

7 / 24

Predictive Techniques: Darts Get Larger
(Cover Exponentially Many Executions)

Buggy
executions

7 / 24

Target Bugs: Data Races

Thread 1: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Thread 2: Withdraw(x)

1 if balance ≥ x then
2 balance← balance− x

Concurrent access to a shared resource

At least one modifies it

}
Data Race

Data races are typically undesirable:

Even if reads and writes were always atomic, the value seen by read
differs depending on whether the write comes before or after

Non-deterministic result (might read half-written long value)

Non-portable: may expose, e.g., cache coherence protocols

Undefined behavior in many memory models: bad by definition
(if program has races, you cannot prove it has even trivial properties)

8 / 24

Approaches to Data Races

Static analysis (e.g. type system disciplines):

good: work for all executions of a program

bad: spurious warnings, reject certain algorithms and data structures

Our focus: trace known, find bugs for related schedules. Prior work:
Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, Thomas E.
Anderson: Eraser: A Dynamic Data Race Detector for Multithreaded Programs.
ACM Trans. Comput. Syst. 1997.

Tayfun Elmas, Shaz Qadeer, Serdar Tasiran: Goldilocks: a race and
transaction-aware java runtime. PLDI 2007

Cormac Flanagan, Stephen N. Freund: FastTrack: efficient and precise dynamic
race detection. PLDI 2009

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, Cormac
Flanagan: Sound predictive race detection in polynomial time. POPL 2012

Dileep Kini, Umang Mathur, Mahesh Viswanathan: Dynamic race prediction in
linear time. PLDI 2017

Jake Roemer, Kaan Gen, Michael D. Bond: High-coverage, unbounded sound
predictive race detection. PLDI 2018

9 / 24

Existing Techniques

Simplify the underlying algorithmic issue in different ways:

precise reordering, but exponential search
(in practice: apply it in a window, which misses long-distance races)

weaker reordering: reports non-existing races, not so helpful

use under-approximation: fix certain orders just because they are
ordered in the input trace to make it easier to ensure the trace is
feasible
Misses opportunity to report certain races:

τ1 τ2
acq(`)
w(x)
rel(`)

acq(`)
w(x)
r(x)
rel(`)
r(x)

τ1 τ2
acq(`)
w(x)
r(x)
rel(`)

acq(`)
r(x)

w(x)

10 / 24

Contributions

M2:

A new algorithm for predicting data races

Efficient (poly-time)

Sound (no false positives)

Complete for 2 threads (no false negatives either)

Dynamic completeness criteria (for given input)

11 / 24

Our Setting

k threads running in parallel (every trace has a finite k)

communication over shared variables x , y , . . .

synchronization over locks `1, `2, . . .

Each thread executes global events:

Write to global variable w(x)

Read from global variable r(x)

Acquire a lock acq(`)

Release a lock rel(`)

Ignore local (invisible) computation

Our implementation also supports fork-join
(dependency to first and from last instruction of new thread)

12 / 24

Traces

A (concurrent) trace is a sequence of events

t = w(x), acq(`), r(x),w(x),w(y), rel(`), acq(`), r(y),w(y), rel(`)

Events belong to different threads
(w(x) is e.g. w(x)2 where 2 indicates the thread identifier)

Locks mark critical sections

Each read observes the preceding write to the same variable

Observation function Ot : R(t)→W(t)

13 / 24

Traces

A (concurrent) trace is a sequence of events

t = w(x), acq(`), r(x),w(x),w(y), rel(`), acq(`), r(y),w(y), rel(`)

Events belong to different threads
(w(x) is e.g. w(x)2 where 2 indicates the thread identifier)

Locks mark critical sections

Each read observes the preceding write to the same variable

Observation function Ot : R(t)→W(t)

13 / 24

Traces

A (concurrent) trace is a sequence of events

t = w(x), acq(`), r(x),w(x),w(y), rel(`), acq(`), r(y),w(y), rel(`)

Events belong to different threads
(w(x) is e.g. w(x)2 where 2 indicates the thread identifier)

Locks mark critical sections

Each read observes the preceding write to the same variable

Observation function Ot : R(t)→W(t)

13 / 24

Data Races

Definition (Conflicting Events)

Events e1, e2 are conflicting if

they access the same variable

one (at least) writes

Definition (Data Race in a Trace)

A data race in t is a conflicting pair of events
e1, e2 which

belong to different processes

appear next to each other: t = . . . , e1, e2, . . .

14 / 24

Data Races

Definition (Conflicting Events)

Events e1, e2 are conflicting if

they access the same variable

one (at least) writes

Definition (Data Race in a Trace)

A data race in t is a conflicting pair of events
e1, e2 which

belong to different processes

appear next to each other: t = . . . , e1, e2, . . .

τ1 τ2
acq(`)
w(x)
rel(`)

acq(`)
r(x)
rel(`)

w(x)
r(x)

14 / 24

Data Races

Definition (Conflicting Events)

Events e1, e2 are conflicting if

they access the same variable

one (at least) writes

Definition (Data Race in a Trace)

A data race in t is a conflicting pair of events
e1, e2 which

belong to different processes

appear next to each other: t = . . . , e1, e2, . . .

τ1 τ2
acq(`)
w(x)
rel(`)

acq(`)
r(x)
rel(`)

w(x)
r(x)

Can this happen for
some schedule?

14 / 24

Predictable Data Races

Definition (Predictable Race)

(e1, e2) is a predictable race in t if ∃ witness t∗ such that

t∗ is a reordering of t

Ot∗(r) = Ot(r) for all reads r of t∗

(e1, e2) is a data race in t∗

τ1 τ2
acq(`)
w(x)
rel(`)

acq(`)
w(x)
r(x)
rel(`)
r(x)

τ1 τ2
acq(`)
w(x)
r(x)
rel(`)

acq(`)
r(x)

w(x)

15 / 24

Predictable Data Races

Definition (Predictable Race)

(e1, e2) is a predictable race in t if ∃ witness t∗ such that

t∗ is a reordering of t

Ot∗(r) = Ot(r) for all reads r of t∗

(e1, e2) is a data race in t∗

τ1 τ2
acq(`)
w(x)
rel(`)

acq(`)
w(x)
r(x)
rel(`)
r(x)

τ1 τ2
acq(`)
w(x)
r(x)
rel(`)

acq(`)
r(x)

w(x)

We saw this we predicted this

15 / 24

Predictive Race Detection

Problem Statement

Given a trace t, report all predictable races (e1, e2) of t

Soundness:
if you report (e1, e2) then (e1, e2)
is a true race

Completeness:
if (e1, e2) is a true race then you
report (e1, e2)

NP-complete

Sound & Complete
Inefficient

Incomplete
Efficient

16 / 24

Predictive Race Detection

Problem Statement

Given a trace t, report all predictable races (e1, e2) of t

Soundness:
if you report (e1, e2) then (e1, e2)
is a true race

Completeness:
if (e1, e2) is a true race then you
report (e1, e2)

NP-complete

Sound & Complete
Inefficient

Incomplete
Efficient

16 / 24

Predictive Race Detection

Problem Statement

Given a trace t, report all predictable races (e1, e2) of t

Soundness:
if you report (e1, e2) then (e1, e2)
is a true race

Completeness:
if (e1, e2) is a true race then you
report (e1, e2)

NP-complete

Sound & Complete
Inefficient

Incomplete
Efficient

16 / 24

Predictive Race Detection

Problem Statement

Given a trace t, report all predictable races (e1, e2) of t

Soundness:
if you report (e1, e2) then (e1, e2)
is a true race

Completeness:
if (e1, e2) is a true race then you
report (e1, e2)

NP-complete

Sound & Complete
Inefficient

Incomplete
Efficient

It’s (improved) testing, so
it’s OK!

16 / 24

Trace-closed Partial Orders

w

r

w ′

Ot

w

r
w ′

Ot

acq1

rel1
acq2

rel2

17 / 24

Trace-closed Partial Orders

w

r

w ′

Ot

w

r
w ′

Ot

acq1

rel1
acq2

rel2

Until fixpoint

17 / 24

Trace-closed Partial Orders

w

r

w ′

Ot

w

r
w ′

Ot

acq1

rel1
acq2

rel2

Until fixpoint

38

A pair of conflicting events not ordered
; can occur one right after another ; race

17 / 24

Main Algorithm

Theorem

The trace-closure of a partial order can be computed in Õ(n2) time.

The algorithm uses Fenwick tree data structure to incrementally add
edges to partial order.

Complexity is parametrized with respect to the number of threads k and
relies on bounded tree width of the partial order for bounded k.

More details: https://arxiv.org/abs/1901.08857

18 / 24

https://en.wikipedia.org/wiki/Fenwick_tree
https://arxiv.org/abs/1901.08857

Predictive Race Detection

Theorem

(for 2 threads) A trace-closed partial order is linearizable to a valid trace.

Max-min linearizations

Thread 2Thread 1

Each event of t1 before each event of t2 whenever doing this does not a
create cycle. Then linearize arbitrarily.

19 / 24

Predictive Race Detection

Theorem

(for 2 threads) A trace-closed partial order is linearizable to a valid trace.

Max-min linearizations

Thread 2Thread 1

Each event of t1 before each event of t2 whenever doing this does not a
create cycle. Then linearize arbitrarily.

19 / 24

Predictive Race Detection

Theorem

(for 2 threads) A trace-closed partial order is linearizable to a valid trace.

Max-min linearizations

Thread 2Thread 1

Each event of t1 before each event of t2 whenever doing this does not a
create cycle. Then linearize arbitrarily.

19 / 24

Predictive Race Detection

Theorem

(for 2 threads) A trace-closed partial order is linearizable to a valid trace.

Max-min linearizations

Thread 2Thread 1

1

Each event of t1 before each event of t2 whenever doing this does not a
create cycle. Then linearize arbitrarily.

19 / 24

Predictive Race Detection

Theorem

(for 2 threads) A trace-closed partial order is linearizable to a valid trace.

Max-min linearizations

Thread 2Thread 1

21

Each event of t1 before each event of t2 whenever doing this does not a
create cycle. Then linearize arbitrarily.

19 / 24

Predictive Race Detection

Theorem

(for 2 threads) A trace-closed partial order is linearizable to a valid trace.

Max-min linearizations

Thread 2Thread 1

21

3

Each event of t1 before each event of t2 whenever doing this does not a
create cycle. Then linearize arbitrarily.

19 / 24

Predictive Race Detection

Theorem

(for 2 threads) A trace-closed partial order is linearizable to a valid trace.

Max-min linearizations

Thread 2Thread 1

2

4

1

3

Each event of t1 before each event of t2 whenever doing this does not a
create cycle. Then linearize arbitrarily.

19 / 24

Predictive Race Detection

Theorem

(for 2 threads) A trace-closed partial order is linearizable to a valid trace.

Max-min linearizations

Thread 2Thread 1

2

4

1

3

5

Each event of t1 before each event of t2 whenever doing this does not a
create cycle. Then linearize arbitrarily.

19 / 24

Predictive Race Detection

Theorem

(for 2 threads) A trace-closed partial order is linearizable to a valid trace.

Max-min linearizations

Thread 2Thread 1

2

4

6

1

3

5

Each event of t1 before each event of t2 whenever doing this does not a
create cycle. Then linearize arbitrarily.

19 / 24

More than 2 Threads?

We don’t know

p1

p2p3 p4

Closure as before

While ∃ events e1, e2 in the leaves and unordered

Order them as in the input trace
Closure again

If no cycle, max-min linearization works!

Incomplete in general
Works in practice

20 / 24

More than 2 Threads?

We don’t know

p1

p2p3 p4

Closure as before

While ∃ events e1, e2 in the leaves and unordered

Order them as in the input trace
Closure again

If no cycle, max-min linearization works!

Incomplete in general
Works in practice

20 / 24

Implementation & Experiments

Implementation in Java

Comparison against

Doesn’t-Commute DC [RGB, PLDI ’18]

Schedulably-Happens-Before SHB [MKV, OOPSLA ’18]

on a standard benchmark set of traces

21 / 24

Experimental Results

Benchmark k n Races Time ∀
DC SHB M2 DC SHB M2

mergesort 4 3.0K 29 2 53 2.16s 0.37s 0.15s 3

bubblesort 10 4.0K 478 802 909 2.28s 0.62s 2.14s 3

raytracer 2 16K 667 667 667 2.57s 0.51s 0.24s 3

ftpserver 10 48K 95 87 116 2.75s 0.73s 1.79s 3

derby 3 1.0M 38 39 39 15.29s 8.32s 7.15s 3

jigsaw 12 3.0M 17 18 20 40.89s 17.93s 12.80s 3

bufwriter 5 11M 11 11 11 2m59s 47.71s 2m10s 3

cryptorsa 6 43M 7 5 26 6m18s 2m46s 2m36s 3

eclipse 14 90M 465 662 898 14m44s 7m11s 1h58m42s ?
xalan 6 122M 72 89 97 20m12s 9m8s 7m56s 3

lusearch 7 217M 170 360 360 2h49m6s 15m28s 7m36s 3

3 means M2 proved that it found all races (even though k > 2)

22 / 24

Future Directions

Testing is lightweight; explore
efficiency ↔ effectiveness

What’s the best you can do in

O(nc)? O(n)?

Deadlocks, atomicity violations

Relaxed memory models

Other communication
primitives

message passing

Predict with a set of traces

Drive trace generation

Static + Predictive

Predict quantitative properties

Worst-case waiting time to
acquire a resource

Least amount of context
switches

23 / 24

Future Directions

Testing is lightweight; explore
efficiency ↔ effectiveness

What’s the best you can do in

O(nc)? O(n)?

Deadlocks, atomicity violations

Relaxed memory models

Other communication
primitives

message passing

Predict with a set of traces

Drive trace generation

Static + Predictive

Predict quantitative properties

Worst-case waiting time to
acquire a resource

Least amount of context
switches

23 / 24

Future Directions

Testing is lightweight; explore
efficiency ↔ effectiveness

What’s the best you can do in

O(nc)? O(n)?

Deadlocks, atomicity violations

Relaxed memory models

Other communication
primitives

message passing

Predict with a set of traces

Drive trace generation

Static + Predictive

Predict quantitative properties

Worst-case waiting time to
acquire a resource

Least amount of context
switches

23 / 24

Future Directions

Testing is lightweight; explore
efficiency ↔ effectiveness

What’s the best you can do in

O(nc)? O(n)?

Deadlocks, atomicity violations

Relaxed memory models

Other communication
primitives

message passing

Predict with a set of traces

Drive trace generation

Static + Predictive

Predict quantitative properties

Worst-case waiting time to
acquire a resource

Least amount of context
switches

23 / 24

Conclusion

A new algorithm for predicting data races

Efficient (poly-time)

Sound (no false positives)

Complete for 2 threads (no false negatives either)

Effectively complete on our benchmarks (we detect that it is)

24 / 24

