Aligning Building Cadastral Footprints to Aerial Images
by a Deep Learning Multi-Resolution Approach
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Problem: groundtruth data of building R R
rooftops often do not align with the buildings P Tt~
in images --7 ST
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Objectives: o N
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1. Output: displacement map that aligns T e )
the building polygons to the image (forex-§ {  ____---- - STt
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e Secondary: .4 i
1. Output: a segmentation of the buildings 1)
ST —
from the optical image 5
2. Loss: cross entropy of the predicted class for [
each pixel i, gt segmentationloutut
3. The segmentation loss helps to train the net- 3

work as the model has to learn where build-
ing are in order to predict the displacement
map
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e The Convolutionnal Neural Network is itera-
tively applied at different resolutions to
reduce the range of displacement to deal with

How:
e Deep Learning method that builds on [2]

e Use of a modified U-Net |3| to have 2 image
inputs and 2 image outputs
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e Very effective at aligning buildings over aerial
images and generalizes very well
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e The segmentation helps training the model and
also detects new buildings to update the map
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e Another application of this method could be
building height estimation

0.2 4

0.0

I | I I I I | I I
0 2 4 3] 2 10 12 14 16
Threshold (in pixels)

|1] OpenStreetMap contributors. Planet dump retrieved
from https://planet.osm.org , 2017.

2] A. Zampieri et al. Coarse to fine non-rigid registration: e Green buildings: ground truth; red: misaligned |input|; blue: aligned |our output]

a chain of scale-specific neural networks for multimodal
image alignment with application to remote sensing.

arXww:1802.09816, 2018.

e Accuracy measure: Euclidean distance in pixels between ground truth vertices and aligned vertices

e Accumulated distribution of distances is plotted
O. Ronneberger et al. U-net: Convolutional networks P

for biomedical image segmentation. arXww:1505.04597,
2015.




