Large-scale semantic classification: Outcome of the first year of Inria aerial image labeling benchmark B. Huang¹, K. Lu², N. Audebert^{3,4}, A. Khalel⁵, Y. Tarabalka⁶, J. Malof¹, A. Boulch³, B. Le Saux³, L. Collins¹, K. Bradbury¹, S. Lefèvre⁴, M. El-Saban⁵ ¹ Duke University; ² NUS; ³ ONERA; ⁴ Univ. Bretagne-Sud, IRISA; ⁵ Raisa energy; ⁶ UCA, Inria.

⇒ project.inria.fr/aerialimagelabeling/

Inria Benchmark dataset and statistics	2nd place: Dual-resolution U-net (NUS)			
Problem: Large-scale pixelwise semantic labeling of aerial images	 U-net architecture with a pair of dual-resolution images as input 			
 Two semantic classes: <i>building</i> and <i>not building</i> (ref. data by rasterizing building footprints) 	 Crop high-resolution 384 × 384 patches Crop 768 × 768 patches with the same center and downsample them to 384 × 384 patches Features from high & low resolution patches are extracted by U-net 			
Different cities in train and test subsets \Rightarrow E.g., we should classify San Francisco without "seeing" it before				
European/American & high-/low-density urban landscapes in both subsets	Result = weighted sum of dual-resolution score maps			
 0.3 m spatial resolution, 3 color bands, 360 tiles (1500² px each) 	 Loss function = combination of sigmoid cross-entropy (sigmCE) and a Jaccard loss [2]: 			
Statistics: Train Tiles Total area Test Tiles Total area	$L_{NUS} = L_{sigmCE} - \log I_{soft-IOU}$			

Austin, TX	36	81 km ²	Bellingham, WA	36	81 km ²
Chicago, IL	36	81 km ²	San Francisco, CA	36	81 km ²
Kitsap County, WA	36	81 km ²	Bloomington, IN	36	81 km ²
Vienna, Austria	36	81 km ²	Innsbruck, Austria	36	81 km ²
West Tyrol, Austria	36	81 km ²	East Tyrol, Austria	36	81 km ²
Total	180	405 km ²	Total	180	405 km ²

During the first year after the benchmark release:

- \sim > 800 downloads from all continents, from public & private institutes
- 16 submissions with the results on the test set
- Which method is the best? Four winning methods are detailed here

Close-ups of training and test sets

- Implementation details:
 - Channels of the modified U-net are: 32, 64, 128, 128, 256, 128, 128, 64, 32
 - Data augmentation: vertical/horizontal flips
 - Adam optimizer: initial learning rate of 1e 3, a momentum of 0.9, "poly" learning rate policy
 - 30 epochs

[2] Mattyus et al., "Deeproadmapper: Extracting road topology from aerial images," in ICCV, 2017.

3rd place: Signed distance transform regression (ONERA)

- Standard SegNet architecture with pre-trained VGG-16 weights
 - 384 × 384 patches, stochastic gradient descent optimizer
- Include spatial context in optimization

 \Rightarrow Add a regularization loss computed on the Euclidean signed distance transform (SDT) [3]:

 $L_{ONERA} = NLLLoss(Z_{seg}, Y_{seg}) + \lambda L1(Z_{dist}, Y_{dist}),$

where NLLoss = negative log-likelihood loss function, L1 = L1 penalty on SDT distances, $\lambda = hyper-parameter$

[3] Ye, "The signed Euclidean distance transform and its applciations," in ICPR, 1988.

4th place: Stacked U-nets (Raisa Energy)

West Tyrol (train) Bellingham (test) Chicago (train) East Tyrol (test)

1st place: U-net with novel training/test strategy (AMLL, Duke Univ.)

- Original **U-net** architecture [1] with half as many filters at each layer
- **Training strategy:**
 - From training dataset: tiles 6-36 from each city for training, the rest for validation
 - Extract 572×572 input patches on a uniform grid, with 92 pixels of

- Stack of two U-nets arranged end-to-end
 - Second net enhances predictions of the first net
- **Loss function** combines binary cross entropy and a differential form of Intersection over union (IoU) [2]

Experimental results

https://project.inria.fr/aerialimagelabeling/leaderboard/

Belling. Bloom. Inns. S. Francisco East Tyrol Overall

overlap between neighboring patches

- Minibatch of 5 randomly selected patches
- Data augmentation: vertical/horizontal flips and orthogonal rotations
- Cross-entropy objective function
- Adam optimizer: initial learning rate of 1e 3, a momentum of 0.9
- 100 epochs, each epoch processes 8000 minibatches

Label inference:

- U-net predicts poorly at the edge of its output
- To mitigate this problem \Rightarrow use 2636 \times 2636 input patches* during label inference

[1] Ronneberger et al., "U-net: Convolutional networks for biomedical image segmentation," in *MICCAI*, 2015.

* Maximum size supported by 1080 Ti GPU.

AMLL	67.14	65.43	72.27	75.72	74.67	72.55			
NUS	70.74	66.06	73.17	73.57	76.06	72.45			
ONERA	68.92	68.12	71.87	71.17	74.75	71.02			
RAISA	68.73	60.83	70.07	70.64	74.76	69.57			
Numerical evaluation on test set (IoU scores)									

Concluding remarks

- Active exploitation of the benchmark since its release
- U-net architecture has shown the highest performance
- Good choice of loss function & training strategy boosts results
- Published on Nov '16, > 1500 downloads as of June '18, > 50 submissions to contest
- **Contest still open** to submit results to benchmark!