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I - Introduction
• Goal: joint multi-modal alignment and semantic segmentation

• Data:
– optical data: RGB/multi-spectral images from satellite/airplane
– binary cadaster maps: building rooftops as polygons

• Why?: existing cadaster maps can be misaligned and outdated (miss-
ing new buildings), which makes segmentation algorithms difficult to
train. Causes of misalignment:
– different angles of capture, making rooftops move (even on orthorec-

tified images, as Digital Terrain Model is not precise and does not in-
clude buildings)

– human error when annotating buildings
– lack of precision of the ground truth data

II - Multi-task learning
• Model optimized for multiple tasks simultaneously [1]
• Primary task:
– Output: displacement map f̂ aligning polygons to the optical image
– Loss:
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• Secondary task:
– Output: semantic segmentation p̂ of the optical image
– Loss:
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• Multi-task advantage: learning to segment buildings helps in aligning them
• How: Deep Learning method building on [2], resulting in a double input

U-Net [3] with double outputs

III - Double input U-Net with double outputs

IV - Multi-resolution approach

• Models applied iteratively at increasing resolutions, expecting small
displacements at each scale (±4 px)

V - Training
• Supervised approach with ground truth polygons from OpenStreetMap
• Displacement map ground truth: generated by applying random de-
formations to polygons. Maximum displacement: ±32 px
• Random dropping of input polygons, forcing
the detection of new objects for the segmenta-
tion task
• Use of intermediate losses at each level of the network (see Section III),
helping gradients flow and improving final performance on both tasks
• 4 types of pixels: background, polygon interior, edge and vertex. Different
loss coefficient per type: w1 < w2 < w3 < w4 respectively

VI - Results

• Test data: 3 images of 5000× 5000 px with 13614 buildings in total
• Alignment accuracy measure (left figure): proportion of vertices v for
which ‖f̂(v)− fgt(v)‖ ≤ threshold in abscissa
• Segmentation accuracy measure (right figure): Intersection over
Union at various thresholds in abscissa

VII - Building height estimation

• Input: 2 stereo satellite images
with misaligned building polygons
• Process: align building polygons on
both images
• Output: height of each building

VIII - Conclusion
• Effective at aligning existing maps over a new image
• Also detects new buildings with a segmentation map
• Each task helps training the other
• Results in better performance on both tasks
• Intermediate losses inside the network provide better gradient flow
• Code: https://github.com/Lydorn/mapalignment
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