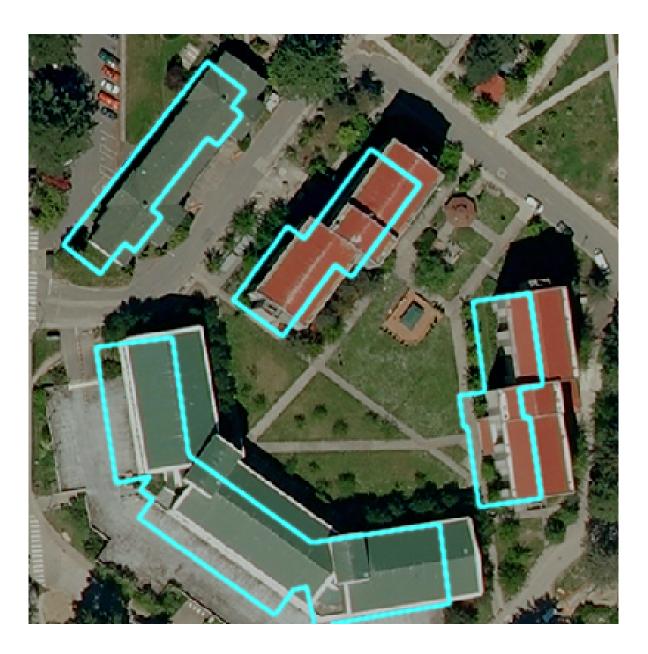
Multimodal image alignment through a multiscale chain of neural networks, with application to remote sensing

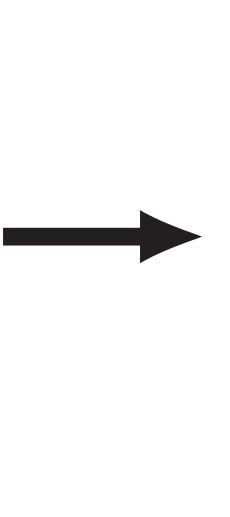
Armand Zampieri¹ armand.zampieri@gmail.com

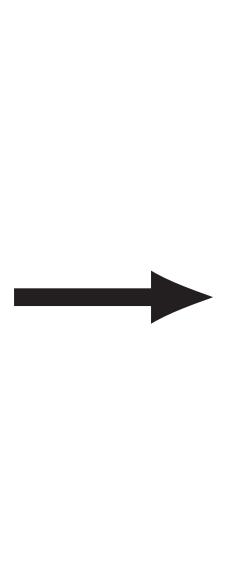
TITANE team, INRIA, Université Côte d'Azur.² TAU team, INRIA Saclay, LRI, Université Paris-Sud.

Introduction

• Goal: multi-modal alignment







- **Data: optical images:** RGB/multi-spectral pictures from satellite / airplane - binary cadaster maps: building rooftops, roads, etc. as polygons
- Why?: used as ground truth when training segmentation algorithms such as [1]) but actually often **not aligned**, because of:

- different angles of capture, making rooftops move (even on orthorectified images, as Digital Terrain Model is not precise and does not include buildings)

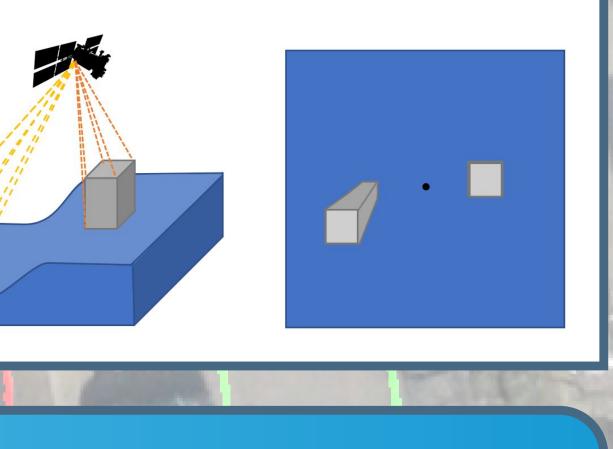
- human error when annotating buildings
- lack of precision of the groundtruth data

Framework

- **Inputs:** optical image and polygon raster of misaligned buildings
- Output: displacement map v that aligns the building polygons to the image
- Loss: $\sum w_p \|v(p) v_{GT}(p)\|^2$ with weights depending on pixel class / type pixels p
- Difficulties: many small objects, multimodality, varied classes, shadows, trees... \Rightarrow do not try to learn common descriptors to be matched later \Rightarrow but predict directly the displacement

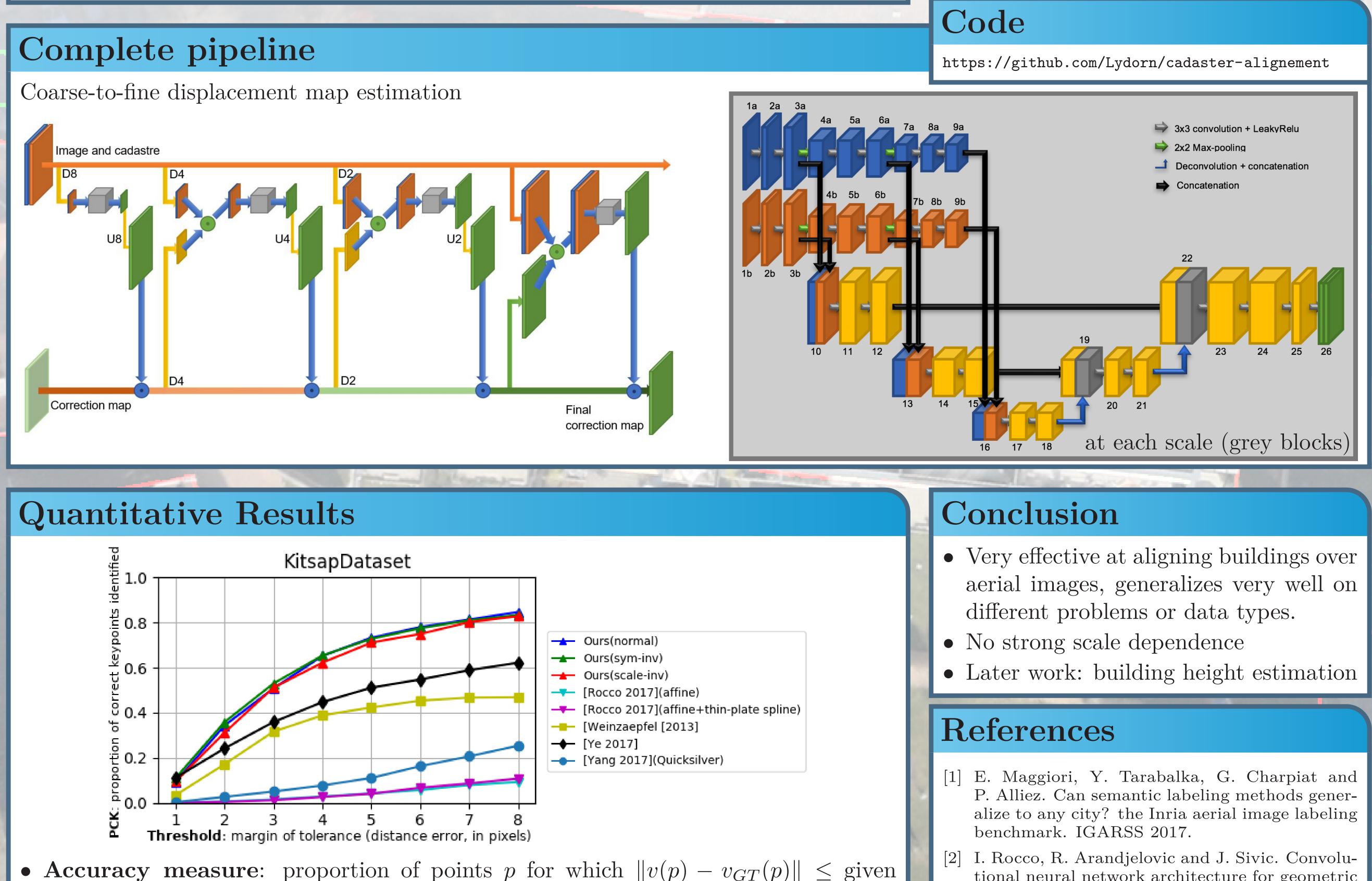
Guillaume Charpiat²

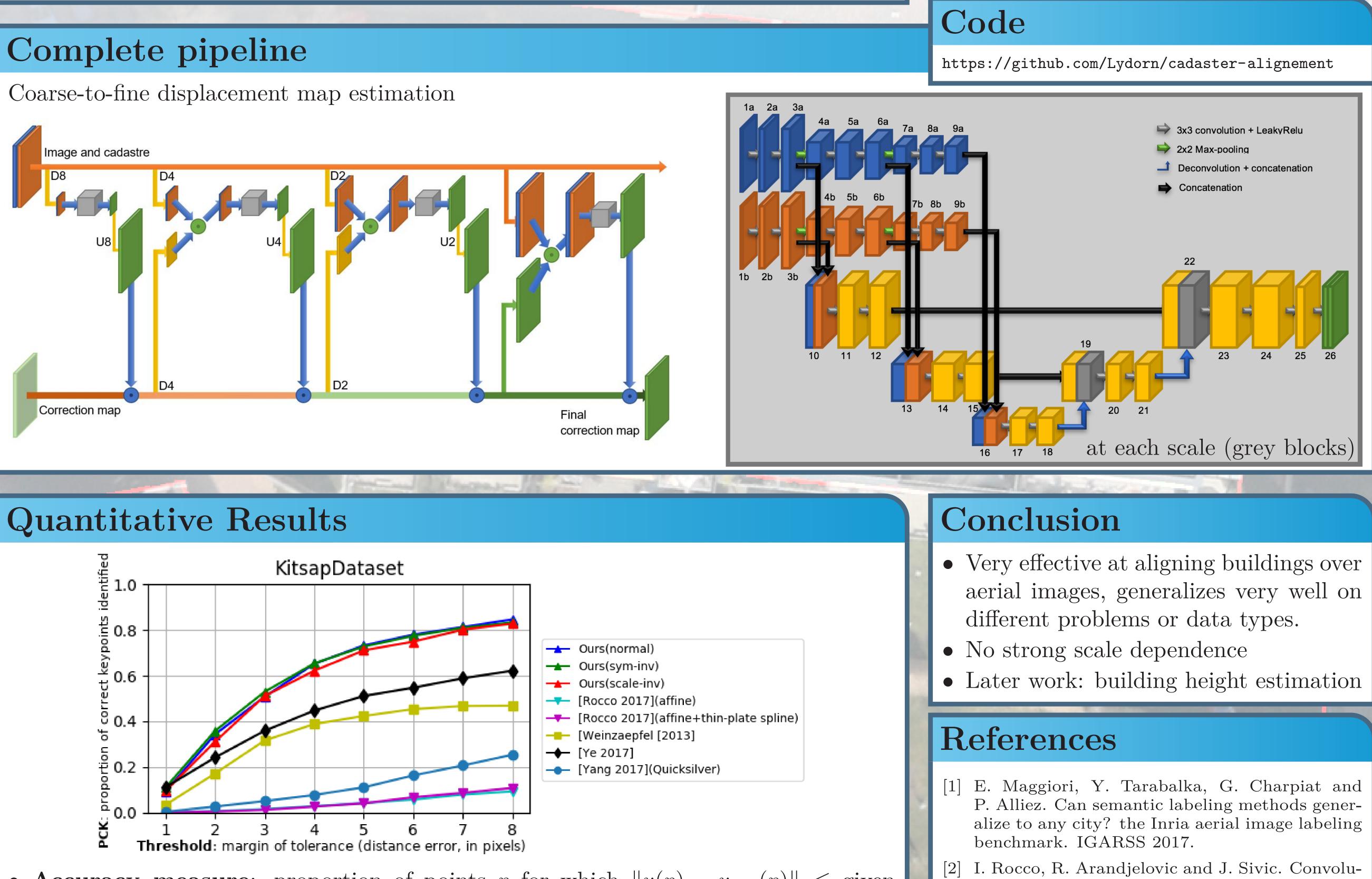
Nicolas Girard¹

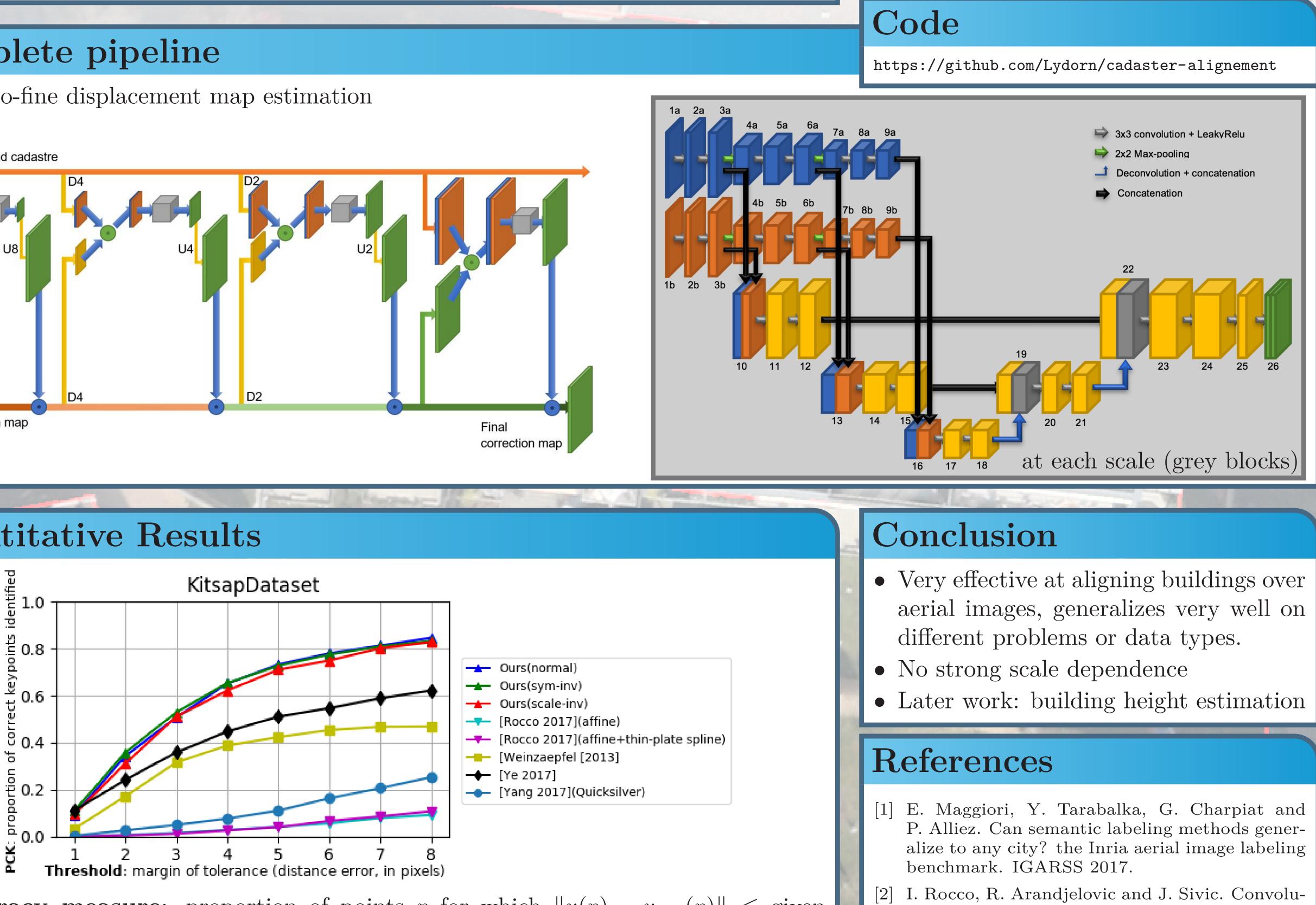


Dealing with scale

- \Rightarrow multi-scale!
- \Rightarrow chain of double-U-nets







- distance error threshold
- registered OpenStreetMap data
- Three variations:

Yuliya Tarabalka¹ firstname.lastname@inria.fr

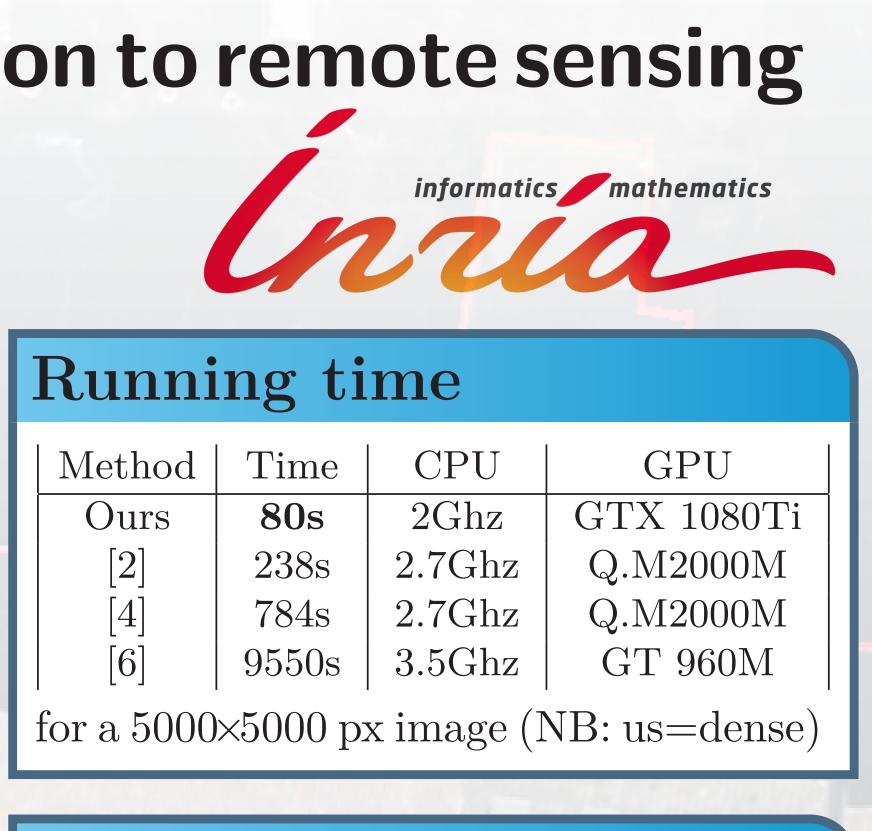
• Large displacements \Rightarrow difficult problem, network optimization gets stuck! • Trick: sufficiently zoomed-out images are perfectly registered \Rightarrow zoom in again progressively and correct small displacements that appear

• Solution: Fully Convolutional Neural Network applied iteratively at increasing resolutions, expecting small displacements at each scale

• **Ground truth**: generated by applying random deformations to carefully-picked well-

- normal: chain of four networks trained at different scales (2^s) - symmetry-invariant: averaged over 8 input transformations (mirroring/rotation) - scale-invariant: one network trained for one scale and applied to every scale \Rightarrow similar performance, far above other approaches (twice more precise)

• Performs well on other problems also (multiclass/roads alignment, stereovision...)



- tional neural network architecture for geometric matching. CVPR 2017.
- [3] O. Ronneberger, P. Fischer and T. Brox. Unet: Convolutional networks for biomedical image segmentation. MICCAI 2015.
- P. Weinzaepfel, J. Revaud, Z. Harchaoui and C. Schmid. DeepFlow: Large displacement optical flow with deep matching. ICCV 2013.
- X. Yang, R. Kwitt and M. Niethammer. Quicksilver: Fast predictive image registration - a deep learning approach. NeuroImage 2017.
- Y. Ye, J. Shan, L. Bruzzone and L. Shen. Robust registration of multimodal remote sensing images based on structural similarity. TGRS 2017.