Improving social welfare in non-cooperative games with different types of quantum resources

Alastair A. Abbott, Mehdi Mhalla, Pierre Pocreau

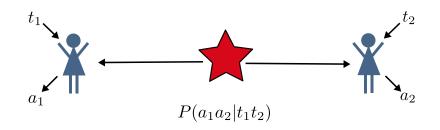
QINFO (Centre Inria de l'Université Grenoble Alpes) LIG, CNRS and Université Grenoble Alpes

arXiv:2211.01687

Inria EQIP Workshop, Strasbourg - 30 November 2022

Warmup: Nonlocal Games

A familiear scenario:



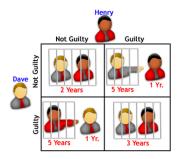
- CHSH game: players win if $a_1 \oplus a_2 = t_1 t_2$
- How well can the players do given different resources?
 - Independent players; shared randomness; quantum resources; no-signalling boxes; communication; . . .
- Cooperative game: all players win and lose together, goals are aligned

- Non-cooperative games and equilibria
- Two different quantum resources
 - Shared quantum correlations (classical "black box" access)
 - Shared quantum states (quantum access)
- Comparing different resources
 - Maximising the social welfare

Non-cooperative game theory

Reality: Players' objectives often not aligned:

- A player's payoff depends on the other players' actions
- Examples:
 - Zero-sum games
 - Prisoner's dilemma



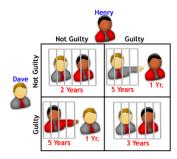
Non-cooperative game theory

Reality: Players' objectives often not aligned:

- A player's payoff depends on the other players' actions
- Examples:
 - Zero-sum games
 - Prisoner's dilemma

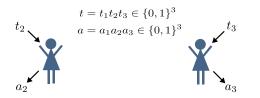
Extensively studied in game theory

- Complex behaviour, Nash equilibria, ...
- Widely applicable



Example: A three-player game

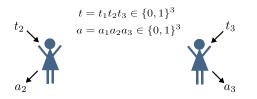
 $t_1 \longrightarrow a_1$



Question	Winning conditions
$t_1 t_2 t_3$	
100	$a_1 \oplus a_2 \oplus a_3 = 0$
010	$a_1 \oplus a_2 \oplus a_3 = 0$
001	$a_1 \oplus a_2 \oplus a_3 = 0$
111	$a_1 \oplus a_2 \oplus a_3 = 1$

Example: A three-player game

 $t_1 \rightarrow a_1$



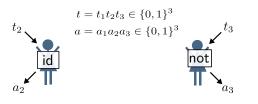
Question	Winning conditions
$t_1 t_2 t_3$	
100	$a_1 \oplus a_2 \oplus a_3 = 0$
010	$a_1 \oplus a_2 \oplus a_3 = 0$
001	$a_1 \oplus a_2 \oplus a_3 = 0$
111	$a_1 \oplus a_2 \oplus a_3 = 1$

Payoff function

$$u_i(a,t) = \begin{cases} 0 & \text{ if } (a,t) \notin \mathcal{W} \\ v_0 & \text{ if } a_i = 0 \text{ and } (a,t) \in \mathcal{W} \\ v_1 & \text{ if } a_i = 1 \text{ and } (a,t) \in \mathcal{W}. \end{cases}$$

Example: A three-player game

 $t_1 \longrightarrow \operatorname{id} \longrightarrow a_1$



Question	Winning conditions
$t_1 t_2 t_3$	
100	$a_1 \oplus a_2 \oplus a_3 = 0$
010	$a_1 \oplus a_2 \oplus a_3 = 0$
001	$a_1 \oplus a_2 \oplus a_3 = 0$
111	$a_1 \oplus a_2 \oplus a_3 = 1$

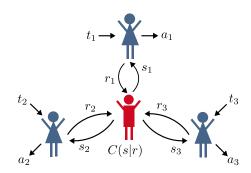
Payoff function $u_i(a,t) = \begin{cases} 0 & \text{if } (a,t) \notin \mathcal{W} \\ v_0 & \text{if } a_i = 0 \text{ and } (a,t) \in \mathcal{W} \\ v_1 & \text{if } a_i = 1 \text{ and } (a,t) \in \mathcal{W}. \end{cases}$

- The strategy (id, id, not) wins 3/4 of the time
- Can a player increase their expected gain, potentially at the expense of the others?
- What strategy maximises the overall (or average) payoff?

Different types of resources

Base scenario: independent local strategies

Different types of resources

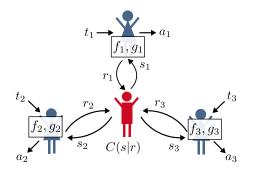


- Base scenario: independent local strategies
- Shared resources: correlated advice

Different class of correlations C:

- Classical shared random variables
- *n*-partite quantum correlations (C_Q)
- Belief-invariant (non-signalling) correlations
- Full communication

Different types of resources



- Base scenario: independent local strategies
- Shared resources: correlated advice

Different class of correlations \mathcal{C} :

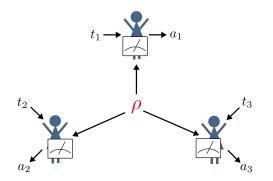
- Classical shared random variables
- *n*-partite quantum correlations (C_Q)
- Belief-invariant (non-signalling) correlations
- Full communication

Definition (Solution)

A solution is a tuple $(f_1, \ldots, f_n, g_1, \ldots, g_n, C)$ and induces a correlation

$$P(a|t) = \sum_{s} C(s|f(t))\delta_{g(t,s),a}$$

Quantum resources: states as advice



Players receive part of a shared quantum state as "advice", and can measure it directly.

Definition (Quantum solution)

A quantum solution is a tuple $(\rho, \mathcal{M}^{(1)}, \dots, \mathcal{M}^{(n)})$, with $\mathcal{M}^{(i)}$ sets of POVMs $\{M_{a_i|t_i}^{(i)}\}_{a_i,t_i}$. It induces a correlation:

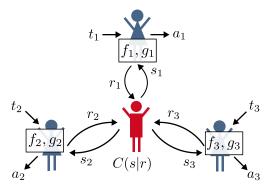
$$P(a|t) = \operatorname{Tr}\left[\rho\left(M_{a_1|t_1}^{(1)} \otimes \cdots \otimes M_{a_n|t_n}^{(n)}\right)\right].$$

[Auletta, Ferraioli, Rai, Scarpa, Winter, JTCS (2021)]

A. A. Abbott

Nash equilibria

In game theory, we are interested in equilibrium solutions, where no player can increase their payoff by unilaterally deviating from a solution.

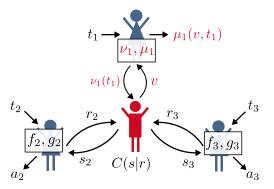


Definition (Nash equilibrium (informal))

A solution is a Nash equilibrium if no player can increase their payout $\sum_{a,t} u_i(a,t)P(a|t)\Pi(t)$ by changing their local strategy (f_i, g_i) to (ν_i, μ_i) .

Nash equilibria

In game theory, we are interested in equilibrium solutions, where no player can increase their payoff by unilaterally deviating from a solution.

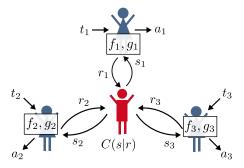


Definition (Nash equilibrium (informal))

A solution is a Nash equilibrium if no player can increase their payout $\sum_{a,t} u_i(a,t)P(a|t)\Pi(t)$ by changing their local strategy (f_i, g_i) to (ν_i, μ_i) .

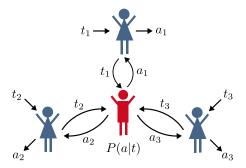
It turns out that for most classes of correlations \mathcal{C} , we can restrict ourselves to canonical solutions:

- Each player sends t_i to the mediator and outputs what they receive as a_i
- $\bullet P(a|t) = C(a|t)$



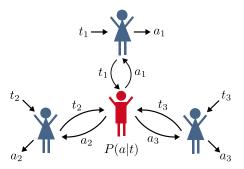
It turns out that for most classes of correlations \mathcal{C} , we can restrict ourselves to canonical solutions:

- Each player sends t_i to the mediator and outputs what they receive as a_i
- $\bullet P(a|t) = C(a|t)$



It turns out that for most classes of correlations C, we can restrict ourselves to canonical solutions:

- Each player sends t_i to the mediator and outputs what they receive as a_i
- $\bullet P(a|t) = C(a|t)$



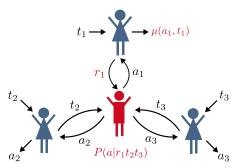
Definition (Nash equilibrium)

A solution is a Nash equilibrium if, for all players i, all $t_i, r_i \in T_i$, and all functions $\mu_i : T_i \times A_i \to A_i$:

$$\sum_{t_{-i},a} u_i(a,t) P(a|t) \ge \sum_{t_{-i},a} u_i(\mu_i(a_i,t_i)a_{-i},t_it_{-i}) P(a|r_it_{-i}).$$

It turns out that for most classes of correlations C, we can restrict ourselves to canonical solutions:

- Each player sends t_i to the mediator and outputs what they receive as a_i
- $\bullet P(a|t) = C(a|t)$

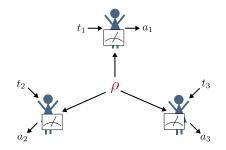


Definition (Nash equilibrium)

A solution is a Nash equilibrium if, for all players i, all $t_i, r_i \in T_i$, and all functions $\mu_i : T_i \times A_i \to A_i$:

$$\sum_{t_{-i},a} u_i(a,t) P(a|t) \ge \sum_{t_{-i},a} u_i(\mu_i(a_i,t_i)a_{-i},t_it_{-i}) P(a|r_it_{-i}).$$

Quantum equilibria



Definition (Quantum equilibrium)

A quantum solution $(\rho, \mathcal{M}^{(1)}, \dots, \mathcal{M}^{(n)})$, is a *quantum equilibrium* if, for every player *i*, for any type t_i and any POVM $N^{(i)} = \{N_{a_i}^{(i)}\}_{a_i \in A_i}$:

$$\sum_{t_{-i,a}} u_i(a,t) \operatorname{Tr} \left[\rho \left(M_{a_1|t_1}^{(1)} \otimes \cdots \otimes M_{a_n|t_n}^{(n)} \right) \right] \Pi(t)$$

$$\geq \sum_{t_{-i,a}} u_i(a,t) \operatorname{Tr} \left[\rho \left(M_{a_1|t_1}^{(1)} \otimes \cdots \otimes M_{a_{i-1}|t_{i-1}}^{(i-1)} \otimes N_{a_i}^{(i)} \otimes M_{a_{i+1}|t_{i+1}}^{(i+1)} \otimes \cdots \otimes M_{a_n|t_n}^{(n)} \right) \right] \Pi(t).$$

A. A. Abbott

Comparing equilibria

- What equilibria can we obtain with a given resource?
- How to compare correlation vs quantum resources?
- How good are the different equilibria?

Comparing equilibria

- What equilibria can we obtain with a given resource?
- How to compare correlation vs quantum resources?
- How good are the different equilibria?

Definition (Sets of induced equilibrium correlations)

For a family ${\mathcal C}$ of advice correlations, the set of induced equilibrium correlations is

 $\{P \mid P \in \mathcal{C} \text{ defines a canonical Nash equilibrium}\} \subseteq \mathcal{C}.$

Comparing equilibria

- What equilibria can we obtain with a given resource?
- How to compare correlation vs quantum resources?
- How good are the different equilibria?

Definition (Sets of induced equilibrium correlations)

For a family ${\mathcal C}$ of advice correlations, the set of induced equilibrium correlations is

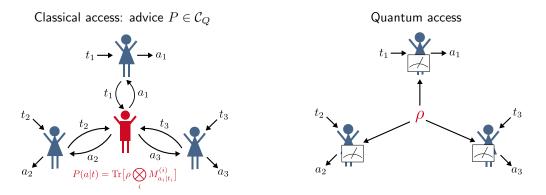
 $\{P \mid P \in \mathcal{C} \text{ defines a canonical Nash equilibrium}\} \subseteq \mathcal{C}.$

Definition (Social welfare)

For a game G, the social welfare of a solution inducing a distribution P is

$$SW(P) = \frac{1}{n} \sum_{i} \sum_{a,t} u_i(a,t) P(a|t) \Pi(t).$$

Two types of quantum resources



Two different levels of access to quantum resources leads to two different notions of equilibria
Two corresponding sets of equilibrium correlations:

$$\begin{split} Q_{\mathrm{corr}}(G) &= \{P \mid P \text{ defines a canonical Nash equilibrium and } P \in \mathcal{C}_Q\} \subseteq \mathcal{C}_Q \\ Q(G) &= \{P \mid \text{there exists } (\rho, \mathcal{M}) \text{ a quantum equilibrium inducing } P\} \subseteq \mathcal{C}_Q \end{split}$$

Quantum access restricts equilibria

Counter-intuitively, allowing the players more control restricts the equilibriums they can reach

Theorem

For any game G, $Q(G) \subseteq Q_{corr}(G)$.

Proof idea.

Any modification on the classical output of a quantum correlation could also be represented by changing the POVMs used to obtained the correlations.

Quantum access restricts equilibria

Counter-intuitively, allowing the players more control restricts the equilibriums they can reach

Theorem

For any game G, $Q(G) \subseteq Q_{corr}(G)$.

Proof idea.

Any modification on the classical output of a quantum correlation could also be represented by changing the POVMs used to obtained the correlations.

The quantum families fit within a hierarchy of equilibrium correlations:

 $Nash(G) \subset Corr(G) \subset Q(G) \subseteq Q_{corr}(G) \subset B.I.(G) \subset Comm(G)).$

[Auletta, Ferraioli, Rai, Scarpa, Winter, JTCS (2021)]

Is the separation strict? Can we obtain better equilibria?

Quantum access restricts equilibria

Counter-intuitively, allowing the players more control restricts the equilibriums they can reach

Theorem

For any game G, $Q(G) \subseteq Q_{corr}(G)$.

Proof idea.

Any modification on the classical output of a quantum correlation could also be represented by changing the POVMs used to obtained the correlations.

The quantum families fit within a hierarchy of equilibrium correlations:

 $Nash(G) \subset Corr(G) \subset Q(G) \subseteq Q_{corr}(G) \subset B.I.(G) \subset Comm(G)).$

[Auletta, Ferraioli, Rai, Scarpa, Winter, JTCS (2021)]

Is the separation strict? Can we obtain better equilibria?

- Comparing the sets of equilibria is challenging:
 - No restriction on dimension of systems
 - Many solutions may give equivalent equilibria
- Relevant proxy: investigate achievable social welfare

- Comparing the sets of equilibria is challenging:
 - No restriction on dimension of systems
 - Many solutions may give equivalent equilibria
- Relevant proxy: investigate achievable social welfare

Maximising social welfare

$$\max_{P} SW_G(P) = \frac{1}{n} \sum_{a,t} \sum_{i} u_i(a,t) P(a|t) \Pi(t),$$

where the maximisation is either over $Q_{\rm corr}(G)\subseteq \mathcal{C}_Q$ or $Q(G)\subseteq \mathcal{C}_Q$

- Comparing the sets of equilibria is challenging:
 - No restriction on dimension of systems
 - Many solutions may give equivalent equilibria
- Relevant proxy: investigate achievable social welfare

Maximising social welfare

$$\max_{P} SW_G(P) = \frac{1}{n} \sum_{a,t} \sum_{i} u_i(a,t) P(a|t) \Pi(t),$$

where the maximisation is either over $Q_{corr}(G) \subseteq \mathcal{C}_Q$ or $Q(G) \subseteq \mathcal{C}_Q$

• Question: how to characterise these sets of equilibria?

- Comparing the sets of equilibria is challenging:
 - No restriction on dimension of systems
 - Many solutions may give equivalent equilibria
- Relevant proxy: investigate achievable social welfare

Maximising social welfare

$$\max_{P} SW_G(P) = \frac{1}{n} \sum_{a,t} \sum_{i} u_i(a,t) P(a|t) \Pi(t),$$

where the maximisation is either over $Q_{corr}(G) \subseteq \mathcal{C}_Q$ or $Q(G) \subseteq \mathcal{C}_Q$

- Question: how to characterise these sets of equilibria?
- Use numerical and SDP methods to compute upper and lower bounds on the maximum social welfare.

Lower bounds: See-saw optimisation

- \blacksquare Key observation: checking if (ρ,\mathcal{M}) is a quantum equilibrium is an SDP
- Constructive method by iterating over each party

See-saw iteration over C_Q

$$\max_{\mathcal{M}^{(N)}} \cdots \max_{\mathcal{M}^{(1)}} \max_{\rho} SW(P) = \frac{1}{N} \sum_{a,t} \sum_{i} u_i(a,t) \operatorname{Tr} \left[\rho \left(M^{(1)}_{a_1|t_1} \otimes \cdots \otimes M^{(n)}_{a_n|t_n} \right) \right] \Pi(t)$$

Lower bounds: See-saw optimisation

- Key observation: checking if (ρ, \mathcal{M}) is a quantum equilibrium is an SDP
- Constructive method by iterating over each party

See-saw iteration over C_Q

$$\max_{\mathcal{M}^{(N)}} \cdots \max_{\mathcal{M}^{(1)}} \max_{\rho} SW(P) = \frac{1}{N} \sum_{a,t} \sum_{i} u_i(a,t) \operatorname{Tr} \left[\rho \left(M_{a_1|t_1}^{(1)} \otimes \cdots \otimes M_{a_n|t_n}^{(n)} \right) \right] \Pi(t)$$

To converge to an equilibrium, we then add:

Quantum equilibria: Q(G)

Each player tries to optimise their own payoff

$$\max_{\mathcal{M}^{(N)}} \cdots \max_{\mathcal{M}^{(1)}} \sum_{a,t} u_i(a,t) \operatorname{Tr} \left[\rho \left(M^{(1)}_{a_1|t_1} \otimes \cdots \otimes M^{(n)}_{a_n|t_n} \right) \right] \Pi(t).$$

Nash equilibria: $Q_{corr}(G)$

The (finite) inequalities constraining Nash equilibria.

Upper bounds: NPA hierarchy

Main difficulty computing upper bounds: there is no easy way to characterise the set of quantum correlations C_Q .

NPA hierarchy

Convergent hierarchy of SDP constraints to test if a distribution is in C_Q , approximating it from the outside (upper bounds).

+

Nash equilibrium

Finite number of linear constraint to test if a probability distribution is a Nash equilibrium.

$$\max_{P \in \widetilde{Q_{\text{corr}}}(G)} SW(P) = \frac{1}{N} \sum_{a,t} \sum_{i} u_i(a,t) P(a|t) \Pi(t).$$

[Navascues, Pironio, Acin, NJP (2008)]

Example revisited

Recall the following family of three-player $NC(C_3)$ games:

Question	Winning conditions
$t_{1}t_{2}t_{3}$	
100	$a_1 \oplus a_2 \oplus a_3 = 0$
010	$a_1 \oplus a_2 \oplus a_3 = 0$
001	$a_1 \oplus a_2 \oplus a_3 = 0$
111	$a_1 \oplus a_2 \oplus a_3 = 1$

Payoff function

$$u_i(a,t) = \begin{cases} 0 & \text{ if } (a,t) \not\in \mathcal{W} \\ v_0 & \text{ if } a_i = 0 \text{ and } (a,t) \in \mathcal{W} \\ v_1 & \text{ if } a_i = 1 \text{ and } (a,t) \in \mathcal{W}. \end{cases}$$

We take $v_0, v_1 > 0$, $v_0 + v_1 = 2$.

[Groisman, McGettrick, Mhalla, Pawlowski, IEEE JSAIT (2020)]

Example revisited

Recall the following family of three-player $NC(C_3)$ games:

Question	Winning conditions
$t_{1}t_{2}t_{3}$	
100	$a_1 \oplus a_2 \oplus a_3 = 0$
010	$a_1 \oplus a_2 \oplus a_3 = 0$
001	$a_1 \oplus a_2 \oplus a_3 = 0$
111	$a_1 \oplus a_2 \oplus a_3 = 1$

Payoff function

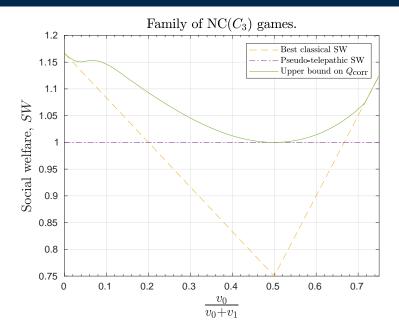
$$u_i(a,t) = \begin{cases} 0 & \text{ if } (a,t) \not\in \mathcal{W} \\ v_0 & \text{ if } a_i = 0 \text{ and } (a,t) \in \mathcal{W} \\ v_1 & \text{ if } a_i = 1 \text{ and } (a,t) \in \mathcal{W}. \end{cases}$$

We take $v_0, v_1 > 0$, $v_0 + v_1 = 2$.

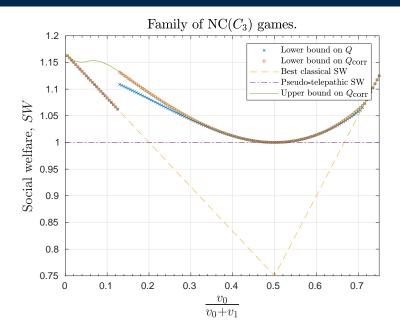
- \blacksquare The best classical (correlated) strategy wins 3/4 of the time
- Graph state and σ_x, σ_z measurements give pseudotelepathic solution
 - Both a quantum correlated and a quantum equilibrium
- But is it the *best* equilibrium in terms of social welfare?
- Is there a difference between types of quantum resources in this game?

[Groisman, McGettrick, Mhalla, Pawlowski, IEEE JSAIT (2020)]

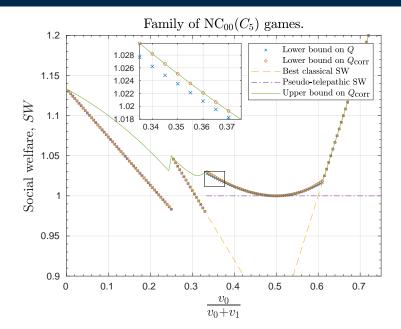
Social Welfare in $NC(C_3)$ games



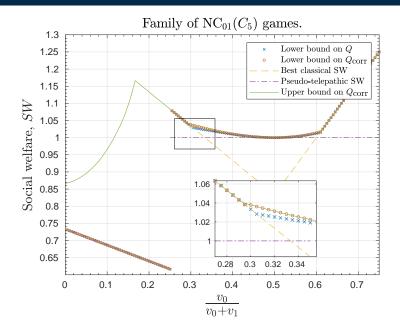
Social Welfare in $NC(C_3)$ games



Social Welfare in some five-player games



Social Welfare in some five-player games



- Non-cooperative games as a portal to adress different types of quantum resources:
 - **Classical access** to a quantum resources: $Q_{corr}(G)$
 - **Quantum access** to a quantum resource: Q(G)
- Counterintuitively, quantum access gives less equilibria: $Q(G) \subseteq Q_{corr}(G)$
- Evidence of a strict separation in terms of social welfare

Open questions and ongoing work:

- How to prove a strict separation?
 - Can the NPA hierarchy be adapted to give upper bounds on Q(G)?
 - Use techniques from self-testing to prove a distribution in $Q_{corr}(G)$ is not in Q(G)?
- Intermediate settings (with classical or quantum access for different players)