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Warmup: Nonlocal Games

A familiear scenario:

CHSH game: players win if a1 ⊕ a2 = t1t2

How well can the players do given different resources?

Independent players; shared randomness; quantum resources; no-signalling boxes;
communication; . . .

Cooperative game: all players win and lose together, goals are aligned
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Outline

Non-cooperative games and equilibria

Two different quantum resources

Shared quantum correlations (classical “black box” access)
Shared quantum states (quantum access)

Comparing different resources

Maximising the social welfare
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Non-cooperative game theory

Reality: Players’ objectives often not aligned:

A player’s payoff depends on the other
players’ actions

Examples:

Zero-sum games
Prisoner’s dilemma

Extensively studied in game theory

Complex behaviour, Nash equilibria, . . .

Widely applicable
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Example: A three-player game

Question Winning conditions
t1t2t3
100 a1 ⊕ a2 ⊕ a3 = 0
010 a1 ⊕ a2 ⊕ a3 = 0
001 a1 ⊕ a2 ⊕ a3 = 0
111 a1 ⊕ a2 ⊕ a3 = 1

Payoff function

ui(a, t) =


0 if (a, t) ̸∈ W
v0 if ai = 0 and (a, t) ∈ W
v1 if ai = 1 and (a, t) ∈ W.

The strategy (id, id, not) wins 3/4 of the time

Can a player increase their expected gain, potentially at the expense of the others?

What strategy maximises the overall (or average) payoff?
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Different types of resources

Base scenario: independent local strategies

Shared resources: correlated advice

Different class of correlations C:
Classical shared random variables

n-partite quantum correlations (CQ)
Belief-invariant (non-signalling) correlations

Full communication

Definition (Solution)

A solution is a tuple (f1, . . . , fn, g1, . . . , gn, C) and induces a correlation

P (a|t) =
∑
s

C(s|f(t))δg(t,s),a
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Quantum resources: states as advice

Players receive part of a shared quantum state as
“advice”, and can measure it directly.

Definition (Quantum solution)

A quantum solution is a tuple
(
ρ,M(1), . . . ,M(n)

)
, with M(i) sets of POVMs {M (i)

ai|ti}ai,ti .

It induces a correlation:
P (a|t) = Tr

[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(n)
an|tn

)]
.

[Auletta, Ferraioli, Rai, Scarpa, Winter, JTCS (2021)]
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Nash equilibria

In game theory, we are interested in equilibrium solutions, where no player can increase their payoff
by unilaterally deviating from a solution.

Definition (Nash equilibrium (informal))

A solution is a Nash equilibrium if no player can increase their payout
∑

a,t ui(a, t)P (a|t)Π(t) by
changing their local strategy (fi, gi) to (νi, µi).
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Simplifying things

It turns out that for most classes of correlations C, we can restrict ourselves to canonical solutions:

Each player sends ti to the mediator and outputs what they receive as ai
P (a|t) = C(a|t)

Definition (Nash equilibrium)

A solution is a Nash equilibrium if, for all players i, all ti, ri ∈ Ti, and all functions
µi : Ti ×Ai → Ai: ∑

t−i,a

ui(a, t)P (a|t) ≥
∑
t−i,a

ui(µi(ai, ti)a−i, tit−i)P (a|rit−i).
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Quantum equilibria

Definition (Quantum equilibrium)

A quantum solution
(
ρ,M(1), . . . ,M(n)

)
, is a quantum equilibrium if, for every player i, for any

type ti and any POVM N (i) = {N (i)
ai }ai∈Ai

:∑
t−i,a

ui(a, t) Tr
[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(n)
an|tn

)]
Π(t)

≥
∑
t−i,a

ui(a, t) Tr
[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(i−1)
ai−1|ti−1

⊗N (i)
ai

⊗M
(i+1)
ai+1|ti+1

⊗ · · · ⊗M
(n)
an|tn

)]
Π(t).
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Comparing equilibria

What equilibria can we obtain with a given resource?

How to compare correlation vs quantum resources?

How good are the different equilibria?

Definition (Sets of induced equilibrium correlations)

For a family C of advice correlations, the set of induced equilibrium correlations is

{P | P ∈ C defines a canonical Nash equilibrium} ⊆ C.

Definition (Social welfare)

For a game G, the social welfare of a solution inducing a distribution P is

SW (P ) =
1

n

∑
i

∑
a,t

ui(a, t)P (a|t)Π(t).
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Two types of quantum resources

Classical access: advice P ∈ CQ Quantum access

Two different levels of access to quantum resources leads to two different notions of equilibria

Two corresponding sets of equilibrium correlations:

Qcorr(G) = {P | P defines a canonical Nash equilibrium and P ∈ CQ} ⊆ CQ
Q(G) = {P | there exists (ρ,M) a quantum equilibrium inducing P} ⊆ CQ
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Quantum access restricts equilibria

Counter-intuitively, allowing the players more control restricts the equilibriums they can reach

Theorem

For any game G, Q(G) ⊆ Qcorr(G).

Proof idea.
Any modification on the classical output of a quantum correlation could also be represented by
changing the POVMs used to obtained the correlations.

The quantum families fit within a hierarchy of equilibrium correlations:

Nash(G) ⊂ Corr(G) ⊂ Q(G) ⊆ Qcorr(G) ⊂ B.I.(G) ⊂ Comm(G)).

[Auletta, Ferraioli, Rai, Scarpa, Winter, JTCS (2021)]

Is the separation strict? Can we obtain better equilibria?
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Optimising the social welfare

Comparing the sets of equilibria is challenging:

No restriction on dimension of systems
Many solutions may give equivalent equilibria

Relevant proxy: investigate achievable social welfare

Maximising social welfare

max
P

SWG(P ) =
1

n

∑
a,t

∑
i

ui(a, t)P (a|t)Π(t),

where the maximisation is either over Qcorr(G) ⊆ CQ or Q(G) ⊆ CQ

Question: how to characterise these sets of equilibria?

Use numerical and SDP methods to compute upper and lower bounds on the maximum social
welfare.
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Lower bounds: See-saw optimisation

Key observation: checking if (ρ,M) is a quantum equilibrium is an SDP

Constructive method by iterating over each party

See-saw iteration over CQ

max
M(N)

· · ·max
M(1)

max
ρ

SW (P ) =
1

N

∑
a,t

∑
i

ui(a, t) Tr
[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(n)
an|tn

)]
Π(t)

To converge to an equilibrium, we then add:

Quantum equilibria: Q(G)

Each player tries to optimise their own payoff

max
M(N)

· · ·max
M(1)

∑
a,t

ui(a, t) Tr
[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(n)
an|tn

)]
Π(t).

Nash equilibria: Qcorr(G)

The (finite) inequalities constraining Nash equilibria.
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Upper bounds: NPA hierarchy

Main difficulty computing upper bounds: there is no easy way to characterise the set of quantum
correlations CQ.

NPA hierarchy

Convergent hierarchy of SDP constraints to test if a distribution is in CQ, approximating it from
the outside (upper bounds).

+

Nash equilibrium

Finite number of linear constraint to test if a probability distribution is a Nash equilibrium.

max
P∈Q̃corr(G)

SW (P ) =
1

N

∑
a,t

∑
i

ui(a, t)P (a|t)Π(t).

[Navascues, Pironio, Acin, NJP (2008)]
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Example revisited

Recall the following family of three-player NC(C3) games:

Question Winning conditions
t1t2t3
100 a1 ⊕ a2 ⊕ a3 = 0
010 a1 ⊕ a2 ⊕ a3 = 0
001 a1 ⊕ a2 ⊕ a3 = 0
111 a1 ⊕ a2 ⊕ a3 = 1

Payoff function

ui(a, t) =


0 if (a, t) ̸∈ W
v0 if ai = 0 and (a, t) ∈ W
v1 if ai = 1 and (a, t) ∈ W.

We take v0, v1 > 0, v0 + v1 = 2.

The best classical (correlated) strategy wins 3/4 of the time

Graph state and σx, σz measurements give pseudotelepathic solution

Both a quantum correlated and a quantum equilibrium

But is it the best equilibrium in terms of social welfare?

Is there a difference between types of quantum resources in this game?

[Groisman, McGettrick, Mhalla, Pawlowski, IEEE JSAIT (2020)]
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Social Welfare in NC(C3) games
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Social Welfare in some five-player games
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Social Welfare in some five-player games
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Summary

Non-cooperative games as a portal to adress different types of quantum resources:

Classical access to a quantum resources: Qcorr(G)
Quantum access to a quantum resource: Q(G)

Counterintuitively, quantum access gives less equilibria: Q(G) ⊆ Qcorr(G)

Evidence of a strict separation in terms of social welfare

Open questions and ongoing work:

How to prove a strict separation?

Can the NPA hierarchy be adapted to give upper bounds on Q(G)?
Use techniques from self-testing to prove a distribution in Qcorr(G) is not in Q(G)?

Intermediate settings (with classical or quantum access for different players)
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