Dehn-twisting the color code

Alexandre Guernut Christophe Vuillot
Loria

November 30, 2022

Stabilizer codes

Given n physical qubits and $n-k$ independent Pauli operators (\mathcal{S}) :

- We encode k logical qubits.
- Code space is +1 common eigenspace of \mathcal{S}.
- Noise is modeled as iid Pauli operators on physical qubits.
- Errors anticommute with some stabilizers, flipping their measurement to -1 .
- After measurements, we get a syndrome from which we compute an error-correcting operator.

Toric codes

Toric codes

Toric codes

Toric codes

Toric codes

Toric codes

Toric codes

Logical operators

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

$$
X_{1} \quad Z_{2}
$$

Dehn twists[1][2]

Dehn twists are linear-depth (in the distance d) procedures which can be split in $\mathcal{O}(d)$ constant-depth steps.

$X_{1} \quad Z_{2}$

X_{2}

Color codes

Color codes

Color codes

Color codes

Color codes

Color codes

Color codes

Color codes

Logical Pauli operators

Code equivalence[3]

Unfolding procedure[3]

Dehn twists

Dehn twists

Dehn twists

Dehn twists

Dehn twists

Dehn twists

Dehn twists

Dehn twists

Dehn twists

Fault-tolerant CNOT

Fault-tolerant CNOT

We expect $d_{\text {eff }}=\frac{d}{12}\left(d_{\text {eff }}=\frac{d}{2 p\left(\left[\frac{d}{2}\right]+1\right)}\right.$ for a $(2 p, 2 q, 2 q)$ lattice $)$.

Summary and further prospects

What we have seen:

- We explicitly compute the unfolding operators
- We go back and forth between color code and surface codes
- Dehn twists in surface codes translate to constant depth CNOT for color codes

Further prospects:

- Phenomenological noise simulation and threshold estimation
- Color code with other layouts (hyperbolic, 3D...)
- Larger constant-depth gate set
R. Koenig, G. Kuperberg, and B. W. Reichardt, "Quantum computation with turaev-viro codes," Annals of Physics, vol. 325, pp. 2707-2749, dec 2010.
围 N. P. Breuckmann, C. Vuillot, E. Campbell, A. Krishna, and B. M. Terhal, "Hyperbolic and semi-hyperbolic surface codes for quantum storage," Quantum Science and Technology, vol. 2, p. 035007, aug 2017.

目 A. Kubica and M. E. Beverland, "Universal transversal gates with color codes: A simplified approach," Physical Review A, vol. 91, mar 2015.

Logical operators

$X_{1} Z_{2} \quad Z_{3} X_{4}$

Logical operators

$Z_{1} X_{2} \quad X_{3} Z_{4}$

X_{1}
Z_{2}
Z_{3}
X_{4}

Logical operators

$Z_{1} X_{2} \quad X_{3} Z_{4}$

X_{1}
Z_{2}
Z_{3}
X_{4}

Logical operators

$$
\begin{aligned}
& X_{1} \quad Z_{3} \\
& \begin{array}{l}
Z_{1} \\
X_{2}
\end{array} \\
& \begin{array}{l}
X_{3} \\
Z_{4}
\end{array} \\
& Z_{2} \quad X_{4}
\end{aligned}
$$

Logical operators

$$
\begin{aligned}
& X_{1} Z_{3} \quad Z_{3} \\
& Z_{2} \quad X_{4} Z_{2}
\end{aligned}
$$

Logical operators

