The 2T bosonic qutrit A two-mode qutrit inspired from cat qudits

Aurélie Denys¹ Anthony Leverrier¹

¹Inria Paris, France

Défi EQIP - 30/11/22

Ínría

Quantum error correction

- Main idea: Introduce redundancy by encoding a Hilbert space into another one of higher dimension.
- Two solutions: multi-qudit formalism and bosonic codes (approach followed by Amazon, Alice&Bob).

Bosonic quantum error correction

Single-mode codes

Encoding a qubit (or qudit) into one mode (corresponding to a Fock space $Span(\{|n\rangle : n \in \mathbb{N}\})$): single-mode codes Examples: cat-codes, binomial codes, GKP codes

naí

Goal: Design a "good" two-mode code

Multimode codes

Multi mode codes (living in tensor products of several Fock spaces) expected to give better performances. Examples: multi-mode GKP, pair-cat, etc...

Goal

Design a "good" multimode code.

Ínnía

Code space definition

Consider a finite constellation of coherent states $\{|\alpha_1\rangle, \ldots, |\alpha_n\rangle\}$, where each α_i is a string of complex numbers (two complex numbers if working with two modes), and define codes whose logical states are given by superpositions of these coherent states.

Why?

- The cat code is an example of such a code and it has nice properties.
- Get analytical formulas for the action of the loss channel on the code space.

Choice of the constellation

Cat codes constellation

$$\left|\bar{k}\right\rangle \propto \sum_{\ell=0}^{dM-1} e^{-\frac{2i\pi k\ell}{d}} \left|\alpha e^{2i\frac{\ell\pi}{d}}\right\rangle$$

The phase-shift keying modulations forming regular polygons

The 2T-constellation

A regular polytope in dimension 4? Look at the subgroups of the units of the quaternions, among which the binary tetrahedral group 2T.

The 24-cell whose vertices correspond to elements of 2T

Robert Webb's Stella software, CC-BY-SA-3.0 🧳

Construction of the 2T-qutrit $00 \bullet 0000$

The 2T-constellation

$$\begin{split} \mathcal{H}_{2\mathcal{T}} &:= \operatorname{Span}(\{|\sqrt{2}e^{i(2k+1)\pi/4}\alpha\rangle|0\rangle, \\ &|0\rangle|\sqrt{2}e^{i(2k+1)\pi/4}\alpha\rangle, \\ &|e^{ik\pi/2}\alpha\rangle|e^{i\ell\pi/2}\alpha\rangle \\ &: 0 \leq k, \ell \leq 3\}) \end{split}$$

The dM-component cat qudit

where $\omega = e^{\frac{2ik\pi}{dM}}$, $|u\rangle := |(a + ib)\alpha\rangle$ for u = a + ib. Code space = $Span(\{|\phi_k\rangle : k \in [0, d - 1]])$

The 2*T*-qutrit: A qutrit in the 2*T*-constellation

►
$$Q = \{\pm 1, \pm i, \pm j, \pm k\}$$
 is a normal subgroup of 2*T*.
► $\forall k \in \{0, 1, 2\},$
 $|\phi_k\rangle \propto \sum_{q \in \omega^k Q} |q\rangle$

where $\omega = -\frac{1}{2}(1 + i + j + k) |q\rangle := |(a + ib)\beta\rangle |(c - id)\beta\rangle$ with $\beta = \sqrt{2}\alpha e^{i\frac{\pi}{4}}$ for q = a + ib + jc + kd.

• Code space = $Span(|\phi_0\rangle, |\phi_1\rangle, |\phi_2\rangle)$

Author: UtilisateurTheon, CC-BY-SA-4.0, Commons

Orthonormal basis

The dM-component cat qudit

The 2T-qutrit $S |\phi_i\rangle = |\phi_{i-1mod3}\rangle$ where S is a symplectic matrix.

$$|\bar{k}
angle \propto \sum_{\ell=0}^{2} \zeta^{-k\ell} |\phi_{\ell}
angle,$$

for $k \in \{0, 1, 2\}$ where $\zeta = e^{\frac{2i\pi}{d}}$.

 $|\bar{k}\rangle \propto \sum_{\ell=0}^{2} \zeta^{-k\ell} |\phi_{\ell}\rangle,$

for
$$k\in\{0,1,2\}$$
 where $\zeta=e^{rac{2i\pi}{3}}$
 $S|ar{k}
angle=\zeta^k|ar{k}
angle$

S acts as a logical Pauli \overline{Z} .

Stabilisers

Jump operators for the 2T-constellation

$$F_{1} = (\hat{a}^{4} + \hat{b}^{4} + \alpha^{4})^{2} - 9\alpha^{8},$$

$$F_{2} = 6\hat{a}^{4}\hat{b}^{4} - \alpha^{4}(\hat{a}^{4} + \hat{b}^{4}) - 4\alpha^{8}.$$

Stabilisers

$$S_{1} = F_{1} + 1$$

$$S_{2} = F_{2} + 1$$

$$S_{3} = e^{i(\hat{n}_{1} + \hat{n}_{2})\pi/4}$$

$$S_{4} = e^{i\hat{n}_{1}\pi/2}$$

$$S_{5} = SWAP$$

Figure of merit

Tool to quantify how close a state is from the corresponding original state after performing a recovery operation?

Entanglement fidelity

 $f(\mathcal{R} \circ \mathcal{N} \circ \mathcal{E}) = \langle \phi | (I_{\mathcal{A}} \otimes (\mathcal{R} \circ \mathcal{N} \circ \mathcal{E}))(|\phi\rangle \langle \phi |) | \phi
angle$

of the channel given by the composition of the encoding \mathcal{E} , the noise \mathcal{N} , and the recovery \mathcal{R} channels, for an input state

$$\left|\phi
ight
angle=rac{1}{\sqrt{d}}\sum_{k=0}^{d}\left|k
ight
angle\left|k
ight
angle$$

the maximally entangled state.

Noise model Pure-loss (main source of noise in bosonic systems)

Maximising the figure of merit

Maximising simultaneously over both the encoding and the recovery channels is hard but an iterative optimisation, via semi-definite programs (SDPs), works well in practice.

Performances of the 2T-qutrit against loss

Comparison with best numerical qutrit found

For small loss strengths γ , the biconvex optimisation does not identify better qutrits than the 2*T*-qutrit.

Performances of the 2T-qutrit against loss

Comparison with cat qutrits

 $\gamma = 0.01 \qquad \qquad 0.25 \leq \alpha \leq 2$ For small loss strengths $\gamma,$ the 2*T*-qutrit performs better than cat qutrits.

Conclusion

Summary

- We introduced a new twomode bosonic qutrit: the 2*T*-qutrit.
- Advantages: Underlying group structure similar to that of cat qudits (the formalism and techniques can be leveraged to this new code), better performance against loss for small noise strengths.

Open questions

- Find a universal gate set and how to implement it.
- Describe a physical error correction procedure.

Ínnío