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Motivations

T gates are expensive to implement in most quantum codes.

Reducing the number of Hadamard gates can lead to a reduction in the
number of T gates.

Every Clifford`T circuit can be optimized so that:

τ ď pn` 1qpn` hq

where τ is the number of T gates in the circuit, h is the number of internal
Hadamard gates in the circuit and n is the number of qubits.

Internal Hadamard gate
A Hadamard gate is said to be internal if and only if there is at least one T gate
that precedes it and one T gate that succeeds it.
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Motivations

Some T -count optimizers are gadgetizing internal Hadamard gates in order
to further reduce the number of T gates.

Hadamard gate gadgetization

|ψy H H |ψy ÝÑÝÑ
X

|ψy S

|`y S S: X H |ψy

This procedure requires one ancilla qubit per internal Hadamard gate, which
motivates the minimization of internal Hadamard gates.
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Clifford+RZ circuits

Pauli rotation

RP pθq “ cospθ{2qI ´ i sinpθ{2qP

where P is a Pauli operator and θ P R.

For example the T gate is a π{4 Pauli Z rotation: T “ RZpπ{4q.

H RZpθ2q H

S H RZpθ3q

RZpθ1q

ÝÑÝÑ

H Z H

S H Z

Z

Z

Y

X

ÝÑÝÑ

?
X

?
X

:

H RZpθq H
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Clifford+RZ circuits
Every Clifford`RZ circuit can be characterized by a sequence of Pauli rotations followed
by a final Clifford operator.

H Z H

S H Z

Z

ÝÑÝÑ

H Z H Z

S H Z

Z

H Z X H

S X H

Z

ÝÑÝÑ

H Z X H

S X H

Z Z

ùù

Y Z Y H H

Z Z X S H

Y Z
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Clifford+RZ circuits

A Clifford operator can be characterized by n stabilizers up to a tX, CNOT, Su

circuit.
Y Z Y H H Z

Z Z X S H Z

Y Z Z

Ð
Ý
Ý

Ð
Ý
Ý

Y Z Y Z Y Z

Hadamard-free
circuitZ Z X Z X Z

Y Z Z

We want to implement this sequence of Pauli products with a minimal number of
Hadamard gates.
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Clifford+RZ circuits

Implementing a sequence of Pauli products is done by inserting Clifford gates so
that each Pauli products is composed of exactly one Z element.

Y Z Y Z Y Z

Hadamard-free
circuitZ Z X Z X Z

Y Z Z

Pauli products implementation

H Z Z

Hadamard-free
circuitZ Z Z

S H H Z
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Clifford+RZ circuits
From this we can easily finish the synthesis of the circuit by inserting RZ gates
and the final Hadamard-free circuit.

H Z Z

Hadamard-free
circuitZ Z Z

S H H Z

Ð
Ý
Ý

Ð
Ý
Ý

H RZpθ1q S

RZpθ2q RZpθ3q S S: X

S H H S:

The sign can be switched using X gates:
ðñRZp´θq X RZpθq X

8



Clifford+RZ circuits
From this we can easily finish the synthesis of the circuit by inserting RZ gates
and the final Hadamard-free circuit.

H Z Z

Hadamard-free
circuitZ Z Z

S H H Z

Ð
Ý
Ý

Ð
Ý
Ý

H RZpθ1q S

RZpθ2q RZpθ3q S S: X

S H H S:

The sign can be switched using X gates:
ðñRZp´θq X RZpθq X

8



Pauli products encoding

The Pauli matrices can be encoded using 2 bits:

I “ p0, 0q Z “ p1, 0q

Y “ p1, 1q X “ p0, 1q

A sequence of m Pauli products can be encoded in a block matrix of size 2n ˆ m: S “

„

SZ

SX

ȷ

.

Example

Y Z Y Z Y Z

Z Z X Z X Z

Y Z Z

ÝÑÝÑ S “

„

SZ

SX

ȷ

“

¨

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1
1 1 0 1 0 1
1 1 0 0 0 1
1 0 1 0 1 0
0 0 1 0 1 0
1 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‚
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Pauli products encoding

SZi

SZj

SXi

SXj

⊕

⊕

CNOTi,j

SZi

SXi

⊕

Si

SZi

SXi

Hi

Example

Y Z Y Z Y Z

Z Z X Z X Z

Y Z Z

CNOT0,1
ÝÑ

X Y Y

Y Z Z Z

Y Z Z

S “

„

SZ

SX

ȷ

“

¨

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1
1 1 0 1 0 1
1 1 0 0 0 1
1 0 1 0 1 0
0 0 1 0 1 0
1 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‚

S “

„

SZ

SX

ȷ

“

¨

˚

˚

˚

˚

˚

˝

0 0 1 0 1 0
1 1 0 1 0 1
1 1 0 0 0 1
1 0 1 0 1 0
1 0 0 0 0 0
1 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‚
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Diagonalization of Pauli products

A Pauli product is diagonal if its components are all Z or I matrices.
If all Pauli products are diagonal, then their implementation can be completed by
inserting only CNOT gates.

H Z Z Z

Z Z Z Z Z Z

Z Z S H Z H Z

CNOT gates insertion

H Z

Z

Z Z S H Z H Z
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Diagonalization of Pauli products

Diagonalization network
A diagonalization network is a circuit in which all Pauli products are diagonal.

Y Z Y Z Y Z

Z Z X Z X Z

Y Z Z

Diagonalization network

H Z Z Z

Z Z Z Z Z Z

Z Z S H Z H Z

Objective: construct a diagonalization network with a minimal number of Hadamard gates.
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Simultaneous diagonalization

Simultaneous diagonalization problem
Find a Clifford circuit C, containing a minimal number of H gates, such that all Pauli products
are diagonalized by C.

Proposition 1
At least rankpSX q Hadamard gates are required to simultaneously diagonalize the Pauli
products encoded in S.

Proof:
1 The only gate that can lower (by at most 1) the rank of SX is the Hadamard gate.
2 If all Pauli products of S are diagonalized then rankpSX q “ 0.

Example

Y X Z

Z X Y

ÝÑ

S H Z Z

S H Z Z

S “

¨

˚

˚

˝

1 0 1
1 0 1
1 1 0
0 1 1

˛

‹

‹

‚

S “

¨

˚

˚

˝

1 1 0
0 1 1
0 0 0
0 0 0

˛

‹

‹

‚
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Diagonalization network synthesis algorithm

Algorithm 1
Let S be a matrix encoded a sequence of m Pauli products.
For i going from 1 to m:

If the ith Pauli product of S is not diagonal, then diagonalize it using one Hadamard gate.

Y X Y

X Y X

Y

S “

¨

˚

˚

˚

˚

˚

˝

1 0 1
0 1 0
1 0 0
1 1 1
1 1 1
1 0 0

˛

‹

‹

‹

‹

‹

‚

CNOT0,1
ÝÑ

CNOT0,2

X Y Y

Z

Z X X

¨

˚

˚

˚

˚

˚

˝

0 1 1
0 1 0
1 0 0
1 1 1
0 0 0
0 1 1

˛

‹

‹

‹

‹

‹

‚

H0
ÝÑ

H Z Y Y

Z

Z X X

¨

˚

˚

˚

˚

˚

˝

1 1 1
0 1 0
1 0 0
0 1 1
0 0 0
0 1 1

˛

‹

‹

‹

‹

‹

‚
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Diagonalization network synthesis algorithm

Algorithm 1
Let S be a matrix encoded a sequence of m Pauli products.
For i going from 1 to m:

If the ith Pauli product of S is not diagonal, then diagonalize it using one Hadamard gate.

CNOT0,2
ÝÑ

H Z Y Y

Z

Z

¨

˚

˚

˚

˚

˚

˝

1 1
1 0
0 0
1 1
0 0
0 0

˛

‹

‹

‹

‹

‹

‚

S0
ÝÑ
H0

H Z S H Z Z

Z

Z

¨

˚

˚

˚

˚

˚

˝

1 1
1 0
0 0
0 0
0 0
0 0

˛

‹

‹

‹

‹

‹

‚

Proposition 2
The circuit constructed by Algorithm 1 contains rankpSX q Hadamard gates and is an optimal
solution to the simultaneous diagonalization network problem.
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Diagonalization network synthesis

Diagonalization network synthesis problem
Let S be a matrix encoding a sequence of m Pauli products.
Find a diagonalization network for S containing a minimal number of Hadamard gates.

Commutativity matrix
The commutativity matrix A associated with S is a strictly upper triangular Boolean matrix of
size m ˆ m such that for all i ă j:

Ai,j “ 0 if S:,i commutes with S:,j ,

Ai,j “ 1 if S:,i anticommutes with S:,j .

Example

Z X Y X

X Y

ÝÑ A “

¨

˚

˚

˝

0 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

˛

‹

‹

‚

S “

¨

˚

˚

˝

1 0 1 0
0 0 0 1
0 1 1 1
1 0 0 1

˛

‹

‹

‚
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Diagonalization network synthesis

Theorem 1
Algorithm 1 solves the diagonalization network synthesis problem optimally using rankpMq

Hadamard gates, where M “

„

SX

A

ȷ

.

Internal Hadamard gates minimization problem
Let S be a matrix encoding a sequence of Pauli products.
Find a diagonalization network for S containing a minimal number of internal Hadamard gates.

Theorem 2
There exists an algorithm solving the internal Hadamard gates minimization problem optimally
using rankpAq internal Hadamard gates.
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Summary

Value to optimize H-count Complexity

H gates rankpMq Opn2mq

Internal H gates (approximation) ď n` rankpAq Opn2mq

Internal H gates rankpAq Opm3q

For a sequence S of Pauli products where
n is the number of qubits, m is the number of Pauli products,
A is the commutativity matrix associated with S,

M “

»

–

SX

A

fi

fl.
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