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@ T gates are expensive to implement in most quantum codes.

@ Reducing the number of Hadamard gates can lead to a reduction in the
number of T' gates.

@ Every Clifford+T circuit can be optimized so that:
T<(n+1)(n+h)

where 7 is the number of T" gates in the circuit, h is the number of internal
Hadamard gates in the circuit and n is the number of qubits.

Internal Hadamard gate

A Hadamard gate is said to be internal if and only if there is at least one T" gate
that precedes it and one 1" gate that succeeds it.




@ Some T-count optimizers are gadgetizing internal Hadamard gates in order
to further reduce the number of T' gates.
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@ Some T-count optimizers are gadgetizing internal Hadamard gates in order
to further reduce the number of T' gates.

Hadamard gate gadgetization
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@ This procedure requires one ancilla qubit per internal Hadamard gate, which
motivates the minimization of internal Hadamard gates.




Clifford+R circuits

Pauli rotation

Rp(6) = cos(0/2)I —isin(6/2)P

where P is a Pauli operator and 6 € R.

For example the T' gate is a /4 Pauli Z rotation: T = Rz(w/4).
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Clifford+R circuits

Pauli rotation

Rp(6) = cos(0/2)I —isin(6/2)P

where P is a Pauli operator and 6 € R.

For example the T' gate is a /4 Pauli Z rotation: T = Rz(w/4).
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Clifford+R circuits

@ Every Clifford+ Rz circuit can be characterized by a sequence of Pauli rotations followed
by a final Clifford operator.
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Clifford+R circuits

@ Every Clifford+ Rz circuit can be characterized by a sequence of Pauli rotations followed
by a final Clifford operator.
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Clifford+R circuits

@ Every Clifford+ Rz circuit can be characterized by a sequence of Pauli rotations followed
by a final Clifford operator.
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Clifford+R circuits

@ Every Clifford+ Rz circuit can be characterized by a sequence of Pauli rotations followed
by a final Clifford operator.
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Clifford+R circuits

@ A Clifford operator can be characterized by n stabilizers up to a {X, CNOT, S}
circuit.
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Hadamard-free
circuit




Clifford+R circuits

@ A Clifford operator can be characterized by n stabilizers up to a {X, CNOT, S}
circuit.
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Hadamard-free
circuit

@ We want to implement this sequence of Pauli products with a minimal number of
Hadamard gates.



Clifford+R circuits

@ Implementing a sequence of Pauli products is done by inserting Clifford gates so
that each Pauli products is composed of exactly one Z element.

Hadamard-free
circuit

Pauli products implementation

[ | &z &z —
a1 Pany D71 Hadamard-free
o—01 2 N o—0—1 2 4 l_ circuit

2 s {11} oy -




Clifford+R circuits

@ From this we can easily finish the synthesis of the circuit by inserting Rz gates
and the final Hadamard-free circuit.
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Clifford+R circuits

@ From this we can easily finish the synthesis of the circuit by inserting Rz gates
and the final Hadamard-free circuit.
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@ The sign can be switched using X gates:
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Pauli products encoding

The Pauli matrices can be encoded using 2 bits:

I=(0,00 Z =(1,0)
Y =(,1) X=(01)

A sequence of m Pauli products can be encoded in a block matrix of size 2n x m: S = [SZ].
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Diagonalization of Pauli products

@ A Pauli product is diagonal if its components are all Z or I matrices.

@ If all Pauli products are diagonal, then their implementation can be completed by
inserting only CNOT gates.

Z <P

l CNOT gates insertion

. Pany Py
—e H A% \v>y

yany
A\ %
5 &

a
s

o
A%
[/Ng
[\Nﬁ
o
AV
o
A%
n
=
o
A%

o
A%
N
o
A%

o
A%

[ -o—{zF

o
A%

11



Diagonalization of Pauli products

Diagonalization network

A diagonalization network is a circuit in which all Pauli products are diagonal.

@ Objective: construct a diagonalization network with a minimal number of Hadamard gates.
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Simultaneous diagonalization

Simultaneous diagonalization problem

Find a Clifford circuit C, containing a minimal number of H gates, such that all Pauli products
are diagonalized by C.
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Simultaneous diagonalization

Simultaneous diagonalization problem

Find a Clifford circuit C, containing a minimal number of H gates, such that all Pauli products
are diagonalized by C.

Proposition 1

At least rank(Sx ) Hadamard gates are required to simultaneously diagonalize the Pauli
products encoded in S.

Proof:
@ The only gate that can lower (by at most 1) the rank of Sx is the Hadamard gate.
@ |If all Pauli products of S are diagonalized then rank(Sx) = 0.
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Diagonalization network synthesis algorithm

Algorithm 1

Let S be a matrix encoded a sequence of m Pauli products.
For i going from 1 to m:

@ If the ¢th Pauli product of S is not diagonal, then diagonalize it using one Hadamard gate.
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Diagonalization network synthesis algorithm

Algorithm 1

Let S be a matrix encoded a sequence of m Pauli products.
For i going from 1 to m:

@ If the ¢th Pauli product of S is not diagonal, then diagonalize it using one Hadamard gate.
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Diagonalization network synthesis algorithm

Algorithm 1

Let S be a matrix encoded a sequence of m Pauli products.
For i going from 1 to m:

@ If the ¢th Pauli product of S is not diagonal, then diagonalize it using one Hadamard gate.
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Diagonalization network synthesis algorithm

Algorithm 1

Let S be a matrix encoded a sequence of m Pauli products.
For ¢ going from 1 to m:

@ If the ith Pauli product of S is not diagonal, then diagonalize it using one Hadamard gate.
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Diagonalization network synthesis algorithm

Algorithm 1

Let S be a matrix encoded a sequence of m Pauli products.
For ¢ going from 1 to m:

@ If the ith Pauli product of S is not diagonal, then diagonalize it using one Hadamard gate.
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Diagonalization network synthesis algorithm

Algorithm 1

Let S be a matrix encoded a sequence of m Pauli products.
For ¢ going from 1 to m:

@ If the ith Pauli product of S is not diagonal, then diagonalize it using one Hadamard gate
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Proposition 2

The circuit constructed by Algorithm 1 contains rank(Sx) Hadamard gates and is an optimal
solution to the simultaneous diagonalization network problem.
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Diagonalization network synthesis

Diagonalization network synthesis problem

Let S be a matrix encoding a sequence of m Pauli products.
Find a diagonalization network for S containing a minimal number of Hadamard gates.
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Diagonalization network synthesis
Diagonalization network synthesis problem

Let S be a matrix encoding a sequence of m Pauli products.
Find a diagonalization network for S containing a minimal number of Hadamard gates.

Commutativity matrix

The commutativity matrix A associated with S is a strictly upper triangular Boolean matrix of
size m X m such that for all 7 < j:

A;; =0 if S.; commutes with S. ;,

A;; =1 if S.; anticommutes with S. ;.
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Diagonalization network synthesis

Algorithm 1 solves the diagonalization network synthesis problem optimally using rank(M)

Hadamard gates, where M = [SX ]

A
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Diagonalization network synthesis

Algorithm 1 solves the diagonalization network synthesis problem optimally using rank(M)

Hadamard gates, where M = [SX ]

A\

Internal Hadamard gates minimization problem

Let S be a matrix encoding a sequence of Pauli products.
Find a diagonalization network for S containing a minimal number of internal Hadamard gates.
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Diagonalization network synthesis

Algorithm 1 solves the diagonalization network synthesis problem optimally using rank(M)

Hadamard gates, where M = [SX ]

A\

Internal Hadamard gates minimization problem

Let S be a matrix encoding a sequence of Pauli products.
Find a diagonalization network for S containing a minimal number of internal Hadamard gates.

There exists an algorithm solving the internal Hadamard gates minimization problem optimally
using rank(A) internal Hadamard gates.
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Value to optimize H-count Complexity

H gates rank (M) O(n*m)

Internal H gates (approximation) | < n + rank(A) | O(n?m)
Internal H gates rank(A) O(m3)

For a sequence S of Pauli products where
@ n is the number of qubits, m is the number of Pauli products,
@ A is the commutativity matrix associated with S,
Sx
A

o M =
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