Optimal Hadamard gate reduction in Clifford+ R_Z circuits

Simon Martiel, Simon Perdrix, Vivien Vandaele and Christophe Vuillot

Défi EQIP

 \bullet T gates are expensive to implement in most quantum codes.

- T gates are expensive to implement in most quantum codes.
- Reducing the number of Hadamard gates can lead to a reduction in the number of T gates.

- T gates are expensive to implement in most quantum codes.
- Reducing the number of Hadamard gates can lead to a reduction in the number of T gates.
- Every Clifford+T circuit can be optimized so that:

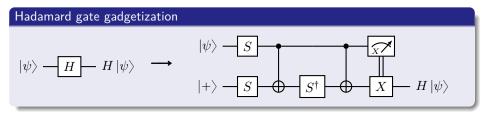
$$\tau \leqslant (n+1)(n+h)$$

where τ is the number of T gates in the circuit, h is the number of internal Hadamard gates in the circuit and n is the number of qubits.

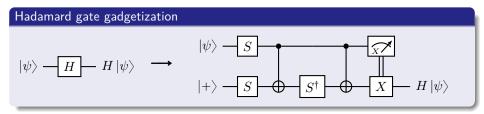
Internal Hadamard gate

A Hadamard gate is said to be internal if and only if there is at least one T gate that precedes it and one T gate that succeeds it.

• Some *T*-count optimizers are gadgetizing internal Hadamard gates in order to further reduce the number of *T* gates.



• Some *T*-count optimizers are gadgetizing internal Hadamard gates in order to further reduce the number of *T* gates.



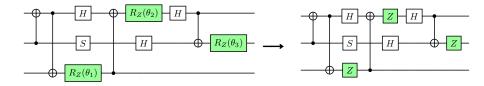
• This procedure requires one ancilla qubit per internal Hadamard gate, which motivates the minimization of internal Hadamard gates.

Pauli rotation

$$R_P(\theta) = \cos(\theta/2)I - i\sin(\theta/2)P$$

where P is a Pauli operator and $\theta \in \mathbb{R}$.

For example the T gate is a $\pi/4$ Pauli Z rotation: $T = R_Z(\pi/4)$.

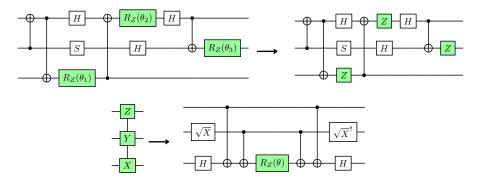


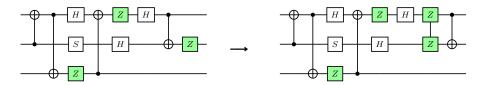
Pauli rotation

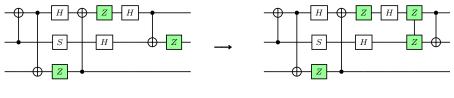
$$R_P(\theta) = \cos(\theta/2)I - i\sin(\theta/2)P$$

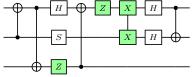
where P is a Pauli operator and $\theta \in \mathbb{R}$.

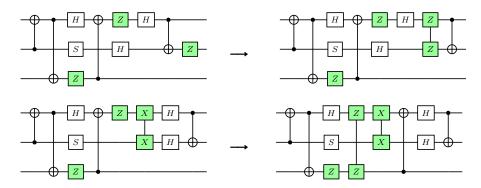
For example the T gate is a $\pi/4$ Pauli Z rotation: $T = R_Z(\pi/4)$.



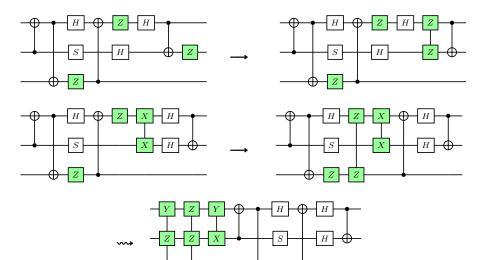




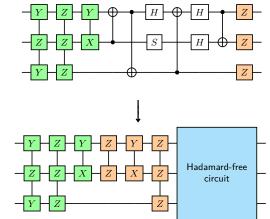




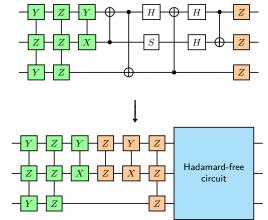
$\mathsf{Clifford} + R_Z \ \mathsf{circuits}$



• A Clifford operator can be characterized by n stabilizers up to a $\{X, {\rm CNOT}, S\}$ circuit.



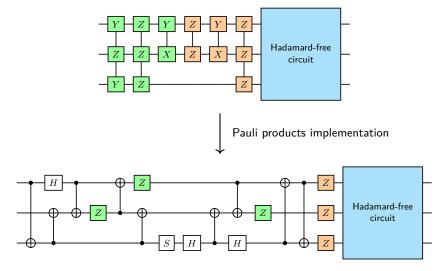
• A Clifford operator can be characterized by *n* stabilizers up to a {*X*, CNOT, *S*} circuit.



 We want to implement this sequence of Pauli products with a minimal number of Hadamard gates.

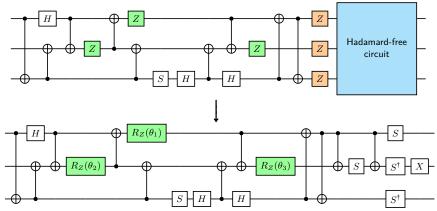
$\mathsf{Clifford} + R_Z \ \mathsf{circuits}$

• Implementing a sequence of Pauli products is done by inserting Clifford gates so that each Pauli products is composed of exactly one Z element.



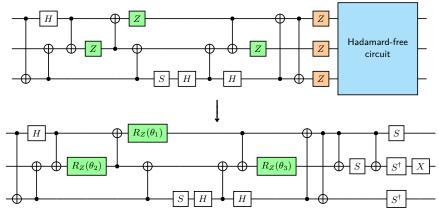
$\mathsf{Clifford} + R_Z \ \mathsf{circuits}$

• From this we can easily finish the synthesis of the circuit by inserting R_Z gates and the final Hadamard-free circuit.



$\mathsf{Clifford} + R_Z \mathsf{ circuits}$

• From this we can easily finish the synthesis of the circuit by inserting R_Z gates and the final Hadamard-free circuit.



• The sign can be switched using X gates:

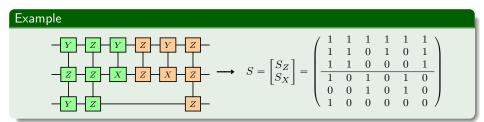
$$-R_Z(-\theta) \longrightarrow -X - R_Z(\theta) - X -$$

The Pauli matrices can be encoded using 2 bits:

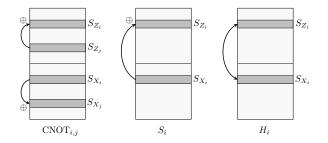
$$I = (0,0) \qquad Z = (1,0)$$

$$Y = (1,1) \qquad X = (0,1)$$

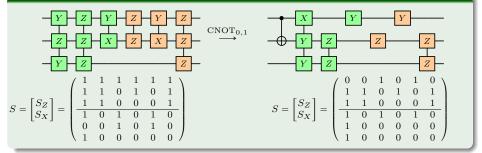
A sequence of *m* Pauli products can be encoded in a block matrix of size $2n \times m$: $S = \begin{bmatrix} S_Z \\ S_X \end{bmatrix}$.



Pauli products encoding

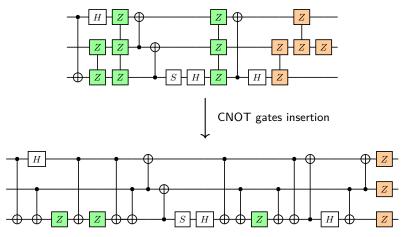


Example



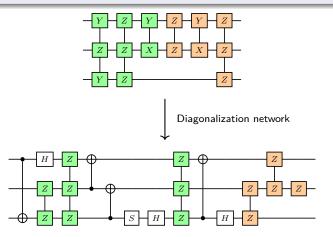
Diagonalization of Pauli products

- A Pauli product is diagonal if its components are all Z or I matrices.
- If all Pauli products are diagonal, then their implementation can be completed by inserting only CNOT gates.



Diagonalization network

A diagonalization network is a circuit in which all Pauli products are diagonal.

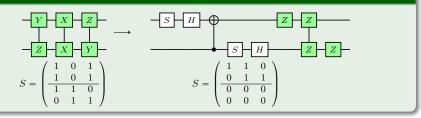


Objective: construct a diagonalization network with a minimal number of Hadamard gates.

Simultaneous diagonalization problem

Find a Clifford circuit C, containing a minimal number of H gates, such that all Pauli products are diagonalized by C.

Example



Simultaneous diagonalization problem

Find a Clifford circuit C, containing a minimal number of H gates, such that all Pauli products are diagonalized by C.

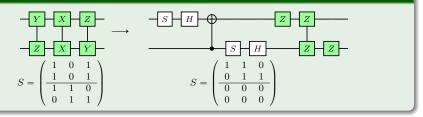
Proposition 1

At least $\mathrm{rank}(S_X)$ Hadamard gates are required to simultaneously diagonalize the Pauli products encoded in S.

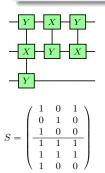
Proof:

- \blacksquare The only gate that can lower (by at most 1) the rank of S_X is the Hadamard gate.
- 2) If all Pauli products of S are diagonalized then $rank(S_X) = 0$.

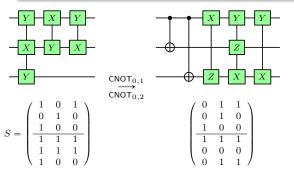
Example



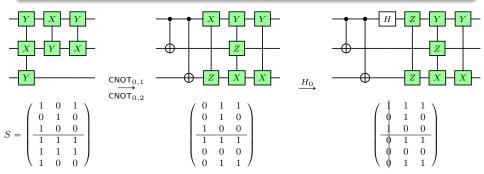
Let S be a matrix encoded a sequence of m Pauli products. For $i \mbox{ going from } 1 \mbox{ to } m :$



Let S be a matrix encoded a sequence of m Pauli products. For $i \mbox{ going from } 1 \mbox{ to } m$:



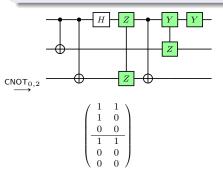
Let S be a matrix encoded a sequence of m Pauli products. For $i \mbox{ going from } 1 \mbox{ to } m$:



Diagonalization network synthesis algorithm

Algorithm 1

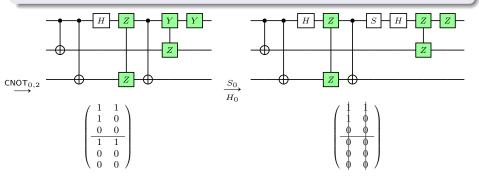
Let S be a matrix encoded a sequence of m Pauli products. For i going from 1 to m:



Diagonalization network synthesis algorithm

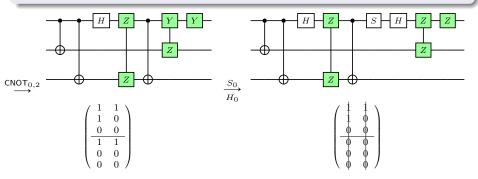
Algorithm 1

Let S be a matrix encoded a sequence of m Pauli products. For i going from 1 to m:



Let S be a matrix encoded a sequence of m Pauli products. For i going from 1 to m:

• If the ith Pauli product of S is not diagonal, then diagonalize it using one Hadamard gate.



Proposition 2

The circuit constructed by Algorithm 1 contains $\operatorname{rank}(S_X)$ Hadamard gates and is an optimal solution to the simultaneous diagonalization network problem.

Diagonalization network synthesis problem

Let S be a matrix encoding a sequence of m Pauli products.

Find a diagonalization network for ${\cal S}$ containing a minimal number of Hadamard gates.

Diagonalization network synthesis problem

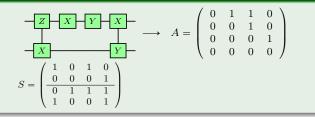
Let S be a matrix encoding a sequence of m Pauli products. Find a diagonalization network for S containing a minimal number of Hadamard gates.

Commutativity matrix

The commutativity matrix A associated with S is a strictly upper triangular Boolean matrix of size $m \times m$ such that for all i < j:

$$\begin{split} A_{i,j} &= 0 \quad \text{ if } S_{:,i} \text{ commutes with } S_{:,j}, \\ A_{i,j} &= 1 \quad \text{ if } S_{:,i} \text{ anticommutes with } S_{:,j}. \end{split}$$

Example



Theorem 1

Algorithm 1 solves the diagonalization network synthesis problem optimally using $\operatorname{rank}(M)$ Hadamard gates, where $M = \begin{bmatrix} S_X \\ A \end{bmatrix}$.

Theorem 1

Algorithm 1 solves the diagonalization network synthesis problem optimally using $\operatorname{rank}(M)$ Hadamard gates, where $M = \begin{bmatrix} S_X \\ A \end{bmatrix}$.

Internal Hadamard gates minimization problem

Let S be a matrix encoding a sequence of Pauli products. Find a diagonalization network for S containing a minimal number of **internal** Hadamard gates.

Theorem 1

Algorithm 1 solves the diagonalization network synthesis problem optimally using rank(M)Hadamard gates, where $M = \begin{bmatrix} S_X \\ A \end{bmatrix}$.

Internal Hadamard gates minimization problem

Let S be a matrix encoding a sequence of Pauli products. Find a diagonalization network for S containing a minimal number of **internal** Hadamard gates.

Theorem 2

There exists an algorithm solving the internal Hadamard gates minimization problem optimally using rank(A) internal Hadamard gates.

Value to optimize	H-count	Complexity
H gates	$\operatorname{rank}(M)$	$\mathcal{O}(n^2m)$
Internal H gates (approximation)	$\leq n + \operatorname{rank}(A)$	$\mathcal{O}(n^2m)$
Internal H gates	$\operatorname{rank}(A)$	$\mathcal{O}(m^3)$

For a sequence \boldsymbol{S} of Pauli products where

- n is the number of qubits, m is the number of Pauli products,
- A is the commutativity matrix associated with S,

•
$$M = \begin{bmatrix} S_X \\ A \end{bmatrix}$$
.