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Abstract

This work introduces two new notions of dimension, namely the uni-
modular Minkowski and Hausdorff dimensions, which are inspired from
the classical analogous notions. These dimensions are defined for uni-
modular discrete spaces, introduced this work, which provide a common
generalization to stationary point processes under their Palm version and
unimodular random rooted graphs. The use of unimodularity in the def-
initions of dimension is novel. Also, a toolbox of results is presented for
the analysis of these dimensions. In particular, analogues of Billingsley’s
lemma and Frostman’s lemma are presented. These lemmas are instru-
mental in deriving upper bounds on dimensions, whereas lower bounds are
obtained from specific coverings. The notions of unimodular Hausdorff
measure and unimodular dimension function are also introduced. This
toolbox is used to connect the unimodular dimensions to other notions
such as growth rate (various further connections will also be considered
in future papers of the authors). It is also used to analyze the dimensions
of a set of examples pertaining to point processes, branching processes,
random graphs, random walks, and self-similar discrete random spaces.
This work is structured in two papers, with the present paper being the
first.

1 Introduction

Infinite discrete random structures are ubiquitous: random graphs, branching
processes, point processes, graphs or zeros of discrete random walks, discrete
or Euclidean percolation, to name a few. The main novelty of the present
paper is the definition of new notions of dimension for a class of such structures
that, heuristically, enjoy a form of statistical homogeneity. The mathematical
framework proposed to handle such structures is that of unimodular (random)
discrete spaces, where unimodularity is defined here by a straightforward version
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of the mass transport principle (the reader can restrict attention to unimodular
graphs and skip the definition of unimodular discrete spaces at first reading).
This framework unifies unimodular random graphs and networks, stationary
point processes (under their Palm version) and point-stationary point processes.
It does not require more than a metric; for instance, no edges or no underlying
Euclidean space are needed. The statistical homogeneity of such spaces has been
used to define localized versions of global notions such as, e.g., intensity. The
main novelty of the present paper is the use of this homogeneity to define the
notions of unimodular Minkowski and Hausdorff dimensions, which are inspired
by the analogous classical notions. The definitions are obtained naturally by
replacing the infinite sums pertaining to coverings by the expectation of certain
random variables at the origin (which is a distinguished point). These definitions
are local but capture large scale properties of the space.

The definitions are complemented by a toolbox for the analysis of unimod-
ular dimensions. Several analogues of the important results known about the
classical Hausdorff and Minkowski dimensions are established, like for instance
the comparison of the unimodular Minkowski and Hausdorff dimensions as well
as unimodular versions of Billingsley’s lemma and Frostman’s lemma. These
lemmas allow one to connect the dimension to the (polynomial) growth rate of
the space. Analogues of the Hausdorff measure are also defined for unimodular
discrete spaces. This can be used to quantify the size of sets with the same
dimension. The notion of unimodular dimension function is also defined for a
finer quantification of the dimension. While many ideas in this toolbox are im-
ported from the continuum setting, their adaptation is nontrivial and there is no
automatic way to import results from the continuum to the discrete setting. For
some results, the statements fundamentally differ from their continuum analog;
e.g., the statement of Billingsley’s lemma and the result that a subspace may
have a larger Minkowski dimension in this setting.

Several notions of dimension are already defined in the literature for discrete
spaces. For instance, one can mention the growth rate, the notion of discrete
dimension for discrete subsets of Euclidean spaces [7] and Gromov’s notion of
asymptotic dimension [17]. Various other dimensions and exponents are also de-
fined for graphs (see e.g., Subsection 1.1 below). Connections between unimodu-
lar dimensions and some of these earlier notions are clarified. Here are instances
of these connections, established under conditions spelled out in the paper: It
is shown that the discrete dimension [7] is an upper bound for the unimodular
Hausdorff dimension when both notions are defined (i.e., for point-stationary
point processes). If the polynomial growth rate exists, then it is equal to the
unimodular Hausdorff dimension; If the space admits a scaling limit (such limits
are random continuum metric spaces), then the ordinary Hausdorff dimension
of the limit is an upper bound for the unimodular Hausdorff dimension. Note
that these comparison results imply relations between the growth rate, scaling
limits and discrete dimension, which are of independent interest and which are
new to the best of the authors’ knowledge.

The paper also contains new mathematical results of independent interest. A
weak version of Birkhoff’s pointwise ergodic theorem is stated for all unimodular
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discrete spaces. A unimodular version of the max flow min cut theorem is
also proved for unimodular one-ended trees, which is used in the proof of the
unimodular Frostman lemma. Also, for unimodular one-ended trees, a relation
between the growth rate and the height of the root is established as explained
below.

Finally, the framework is used to derive concrete results on the dimension
of several instances of unimodular random discrete metric spaces. This is done
for the zeros and the graph of discrete random walks, sets defined by digit re-
striction, trees obtained from branching processes and drainage network models,
dimension doubling of the simple random walk, etc. Some general results are
obtained for all unimodular trees. For instance, a general relation is established
between the unimodular dimensions of a unimodular one-ended tree and the tail
of the distribution of the height of the root. The dimensions of some unimodular
discrete random fractals are also discussed. The latter are defined in this paper
as unimodular discrete analogues of self similar sets such as the Koch snowflake,
the Sierpinski triangle, etc.

This framework opens several further research directions. There is a large
set of open questions on the dimensions of specific instances of such unimodular
discrete spaces. In particular, this framework might be useful for the study of
some examples which are of interest in mathematical physics (e.g., some uni-
modular spaces constructed from percolation clusters and self-avoiding random
walks). Also, the definitions and many of the results are valid for exponential
(or other) gauge functions. They might have applications in group theory (or
other areas), where most interesting examples have super-polynomial growth.

1.1 Introduction to the Definitions of Dimension

Recall that the Minkowski dimension of a compact metric space X is defined
using the minimum number of balls of radii ε needed to cover X. Now, consider a
(unimodular) discrete space D (it is useful to have in mind the example D = Zk
to see how the definitions work). It is convenient to consider coverings of D by
balls of equal but large radii. Of course, if D is unbounded, then an infinite
number of balls is needed to cover D. So one needs another measure to asses
how many balls are used in a covering. Let S ⊆ D be the set of centers of the
balls in the covering. The idea pursued in this paper is that if D is unimodular,
then the intensity of S is a measure of the average number of points of S per
points of D (S should be equivariant for the intensity to be defined, as discussed
later). This gives rise to the definition of the unimodular Minkowski dimension
naturally.

The idea behind the definition of the unimodular Hausdorff dimension is
similar. Recall that the α-dimensional Hausdorff content of a compact metric
space X is defined by considering the infimum of

∑
iR

α
i , where the Ri’s are the

radii of a sequence of balls that cover X. Also, it is convenient to force an upper
bound on the radii. Now, consider a unimodular discrete spaceD and a covering
of D by balls which may have different radii. Let R(v) be the radius of the ball
centered at v. It is convenient to consider a lower bound on the radii, say R(·) ≥
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1. Again, if D is unbounded, then
∑
v R(v)α is always infinite. The idea is to

leverage the unimodularity of D and consider the average of the values R(·)α
per point as a replacement of the sum. Under the unimodularity assumption,
this can be defined by E [R(o)α], where o stands for the distinguished point of
D (called the origin) and by convention, R(o) is zero if there is no ball centered
at o. This is used to define the unimodular Hausdorff dimension of D in a
natural way.

The literature contains various definitions to study dimension for discrete
structures. Here is a brief summary of those relevant in the present context. The
connections of the earlier definitions with the proposed ones will be discussed
in the next subsection. One is the growth rate of the cardinality of a large ball.
Another is the discrete dimension [7] which uses the idea behind the definition
of the Hausdorff dimension by considering coverings of Φ ⊆ Rk by large balls
and considering the cost ( r

r+|x| )
α for each ball in the covering, where r and x

are the radius and the center of the ball and α is a constant (in fact, this is a
modified version of the definition of [7] mentioned in [11]). Other definitions are
the spectral dimension of a graph (defined in terms of the return probabilities of
the simple random walk), the typical displacement exponent of a graph (see [13]
for both notions), the isoperimetric dimension of a graph [12], the resistance
growth exponent of a graph, the stochastic dimension of a partition of Zk [8],
etc.

In statistical physics, one also assigns dimension and various exponents to
finite models. Famous examples are self-avoiding walks and the boundaries of
large percolation clusters. More on the matter is provided in [4].

1.2 Organization of the Material and Summary of Results

The material is organized in two companion papers (the current paper and [5])
that will be referred to as Parts I and II respectively. The aim of this subsection
is to give a brief summary of the main results and their localizations in the two
parts.

Part I is centered on the framework, the definitions and the basic properties
of unimodular dimensions. It also contains a large set of examples which will
be continued in Part II. These examples stem from point process theory, ran-
dom graphs, random walks, self-similarity or from analogues in the continuum.
Section 2 defines unimodular discrete spaces and equivariant processes, which
are needed throughout. Section 3 presents the definitions of the unimodular
Minkowski and Hausdorff dimensions and the unimodular Hausdorff measure.
It also provides some basic properties of unimodular dimensions as part of the
toolbox for the analysis of unimodular dimensions. Various examples are dis-
cussed in Section 4.

Part II discusses the connections between the proposed dimensions and the
growth rate of the space. Analogues of the mass distribution principle and
Billingsley’s lemma are presented, which provide upper bounds for the unimod-
ular Hausdorff dimension in terms of the growth rate (weighted versions of these
inequalities are also given). General lower bounds are presented as well. These
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results are very useful for calculating the unimodular dimensions in many exam-
ples. An important result in the opposite direction is an analogue of Frostman’s
lemma. Roughly speaking, it states that the mass distribution principle is sharp
if the weights are chosen appropriately. This lemma is a powerful tool to study
the unimodular Hausdorff dimension.

In the Euclidean case, another proof of Frostman’s lemma is provided using a
version of the max-flow min-cut theorem for unimodular one-ended trees, which
is of independent interest. Part II also contains a section about examples that
completes the examples discussed in Part I.

Some further topics are discussed in a preprint [4] which contains extensions
of the notions of dimension and also their connections to classical notions.

2 Unimodular Discrete Spaces

The main objective of this section is the definition of unimodular discrete spaces
as a common generalization of unimodular graphs, Palm probabilities and point-
stationary point processes. If the reader is familiar with unimodular random
graphs, he or she can restrict attention to the case of unimodular graphs and
jump to Subsection 2.5 at first reading.

2.1 Notation

The following notation will be used throughout. The set of nonnegative real
(resp. integer) numbers is denoted by R≥0 (resp. Z≥0). The minimum and
maximum binary operators are denoted by ∧ and ∨ respectively. The number
of elements in a set A is denoted by #A, which is a number in [0,∞]. If P (x)
is a property about x, the indicator 1{P (x)} is equal to 1 if P (x) is true and 0
otherwise.

Discrete metric spaces (discussed in details in Subsection 2.2) are denoted
by D, D′, etc. Graphs are an important class of discrete metric spaces. So the
symbols and notations are mostly borrowed from graph theory.

For r > 0, Nr(v) :=Nr(D, v) refers to the closed r-neighborhood of v ∈ D;
i.e., the set of points of D with distance less than or equal to r from v. An
exception is made for r = 0 (Subsection 3.3), where N0(v) := ∅. The diameter
of a subset A is denoted by diam(A). For a function f : [1,∞) → R≥0, the
polynomial growth rates and polynomial decay rates are defined by the following
formulas:

growth (f) := −decay (f) := lim inf
r→∞

log f(r)/log r,

growth (f) := −decay (f) := lim sup
r→∞

log f(r)/log r,

growth (f) := −decay (f) := lim
r→∞

log f(r)/log r.
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2.2 The Space of Pointed Discrete Spaces

Throughout the paper, the metric on any metric space is denoted by d, except
when explicitly mentioned. In this paper, it is always assumed that the discrete
metric space is boundedly finite; i.e., every set included in a ball of finite
radius in D is finite. The term discrete space will always refer to boundedly
finite discrete metric space. A pointed set (or a rooted set) is a pair (D, o),
where D is a set and o a distinguished point of D called the origin (or the root)
of D. Similarly, a doubly-pointed set is a triple (D, o1, o2), where o1 and o2

are two distinguished points of D.
Let Ξ be a complete separable metric space called the mark space. A

marked pointed discrete space is a tuple (D, o;m), where (D, o) is a pointed
discrete space and m is a function m : D ×D → Ξ. The mark of a single point
x may also be defined by m(x) := m(x, x), where the same symbol m is used
for simplicity. An isomorphism (or rooted isomorphism) between two such
spaces (D, o;m) and (D′, o′;m′) is an isometry ρ : D → D′ such that ρ(o) = o′

and m′(ρ(u), ρ(v)) = m(u, v) for all u, v ∈ D. An isomorphism between doubly-
pointed marked discrete spaces is defined similarly. An isomorphism from a
space to itself is called an automorphism.

Most of the examples of discrete spaces in this work are graphs and discrete
subsets of the Euclidean space. More precisely, connected and locally-finite sim-
ple graphs equipped with the graph-distance metric [2] are instances of discrete
spaces. Similarly, networks; i.e., graphs equipped with marks on the edges [2],
are instances of marked discrete spaces.

Let D∗ (resp. D∗∗) be the set of equivalence classes of pointed (resp. doubly-
pointed) discrete spaces under isomorphism. Let D′∗ and D′∗∗ be defined sim-
ilarly for marked discrete spaces with mark space Ξ (which is usually given).
The equivalence class containing (D, o), (D, o;m) etc., is denoted by brackets
[D, o], [D, o;m], etc.

Every element of D∗ can be regarded as a boundedly-compact measured met-
ric space (where the measure is the counting measure). Therefore, the gener-
alization of the Gromov-Hausdorff-Prokhorov metric in [23] defines a metric on
D∗. By using the results of [23], one can show that D∗ is a Borel subset of
some complete separable metric space, where the proof is skipped for brevity
(the arXiv version of this paper also defines a similar metric and proves this
result). Similarly, one can show that D∗∗,D′∗ and D′∗∗ are Borel subsets of some
complete separable metric spaces (see [21]). This enables one to define random
pointed discrete spaces, etc., which are discussed in the next subsection.

2.3 Random Pointed Discrete Spaces

Definition 2.1. A random pointed discrete space is a random element in
D∗ and is denoted by bold symbols [D,o]. Here, D and o represent the discrete
space and the origin respectively.

The last paragraph of Subsection 2.2 ensures that a standard probability
space can be used in the above definition, and hence, the classical tools of prob-

6



ability theory are available. The probability space is not referred to explicitly
in this paper. Note that the whole symbol [D,o] represents one random object,
which is a random equivalence class of pointed discrete spaces. Therefore, any
formula usingD and o should be well defined for equivalence classes; i.e., should
be invariant under pointed isomorphisms.

The following convention is helpful throughout.

Convention 2.2. In this paper, bold symbols are usually used in the random
case or when extra randomness is used. For example, [D, o] refers to a deter-
ministic element of D∗ and [D,o] refers to a random pointed discrete space.

Note that the distribution of a random pointed network [D,o] is a probability
measure on D∗ defined by µ(A) := P [[D,o] ∈ A] for events A ⊆ D∗.

Definition 2.3. A random pointed marked discrete space is a random
element in D′∗ and is denoted by bold symbols [D,o;m]. Here, D, o and m
represent the discrete space, the origin and the mark function respectively.

Most examples in this work are either random rooted graphs (or networks)
[2] or point processes (i.e., random discrete subset of Rk) and marked point
processes that contain 0, where 0 is considered as the origin. Other examples
are also studied by considering different metrics on such objects.

2.4 Unimodular Discrete Spaces

Once the notion of random pointed discrete space is defined, the definition
of unimodularity is a straight variant of [2]. In what follows, the notation is
similarly to [6]. Here, the symbol g[D, o, v] is used as a short form of g([D, o, v]).
Similarly, brackets [·] are used as a short form of ([·]).

Definition 2.4. A unimodular discrete space is a random pointed discrete
space, namely [D,o], such that for all measurable functions g : D∗∗ → R≥0,

E

[∑
v∈D

g[D,o, v]

]
= E

[∑
v∈D

g[D, v,o]

]
. (2.1)

Similarly, a unimodular marked discrete space is a random pointed marked
discrete space [D,o;m] such that for all measurable functions g : D′∗∗ → R≥0,

E

[∑
v∈D

g[D,o, v;m]

]
= E

[∑
v∈D

g[D, v,o;m]

]
. (2.2)

Note that the expectations may be finite or infinite.

When there is no ambiguity, the term g[D, o, v] is also denoted by gD(o, v) or
simply g(o, v). The sum in the left (respectively right) side of (2.1) is called the
outgoing mass from o (respectively incoming mass into o) and is denoted
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by g+(o) (respectively g−(o)). The same notation can be used for the terms
in (2.2). So (2.1) and (2.2) can be summarized by

E
[
g+(o)

]
= E

[
g−(o)

]
.

These equations are called the mass transport principle in the literature. The
reader is encouraged to see [2] and the examples therein for further discussion
on the mass transport principle and unimodularity.

As a basic example, every finite metric spaceD, equipped with a random root
o ∈ D chosen uniformly, is unimodular. Also, the lattices in the Euclidean space
rooted at 0; e.g., [Zk, 0] and [δZk, 0] are unimodular. In addition, unimodularity
is preserved under weak convergence, as observed in [10] for unimodular graphs.

The following two examples show that unimodular discrete spaces unify uni-
modular graphs and point-stationary point processes. Most of the examples in
this work are of these types.

Example 2.5 (Unimodular Random Graphs). In the case of random rooted
graphs and networks, the concept of unimodularity in Definition 2.4 coincides
with that of [2] (see also Remark A.5 of the arXiv version regarding the topolo-
gies). Therefore, unimodular random graphs and networks are special cases of
unimodular (marked) discrete spaces.

Example 2.6 (Point-Stationary Point Processes). Point-stationarity is de-
fined for point processes Φ in Rk such that 0 ∈ Φ a.s. (see e.g., [24]). This
definition is equivalent to (2.1) except that g is required to be invariant under
translations only (and not under all isometries). This implies that [Φ, 0] is uni-
modular. In addition, by considering the mark m(x, y) := y − x on pairs of
points of Φ, point-stationarity of Φ will be equivalent to the unimodularity of
[Φ, 0;m] (see also Remark A.5 of the arXiv version regarding the topologies).
Note also that Φ can be recovered from [Φ, 0;m].
For example, if Φ is a stationary point process in Rk (i.e., its distribution is in-
variant under all translations) with finite intensity (i.e., finite expected number
of points in the unit cube), then the Palm version of Φ is a point-stationary
point process, where the latter is heuristically obtained by conditioning Φ to
contain the origin (see e.g., Section 13 of [14] for the precise definition). Also,
if (Xn)n∈Z is a stochastic process in Rk with stationary increments such that
X0 = 0 and Xi 6= Xj a.s. for every i 6= j, then the image of this random walk
is a point-stationary point process.

2.5 Equivariant Process on a Unimodular Discrete Space

In many cases in this paper, an unmarked unimodular discrete space [D,o] is
given and various ways of assigning marks to D are considered. Intuitively, an
equivariant process on D is an assignment of (random) marks to D such that
the new marked space is unimodular. Formally, it is

a unimodular marked discrete space [D′,o′;m] such that the space
[D′,o′], obtained by forgetting the marks, has the same distribution
as [D,o].
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In this paper, it is more convenient to work with a disintegrated form of this
heuristic, defined below, despite of being more technical. It is not very easy,
but can be proved that the two notions are equivalent, but the proof is skipped
for brevity (see Lemma 2.11 below and Proposition B.1 of the arXiv version).
This claim is similar to invariant disintegration for group actions.

In the following, the mark space Ξ is fixed as in Subsection 2.2.

Definition 2.7. Let D be a deterministic discrete space which is boundedly-
finite. A marking of D is a function from D×D to Ξ; i.e., an element of ΞD×D.
A random marking of D is a random element of ΞD×D.

Definition 2.8. An equivariant process Z with values in Ξ is a map that
assigns to every deterministic discrete space D a random marking ZD of D
satisfying the following properties:

(i) Z is compatible with isometries in the sense that for every isometry ρ :
D1 → D2, the random marking ZD1 ◦ρ−1 of D2 has the same distribution
as ZD2

.

(ii) For every measurable subset A ⊆ D′∗, the following function on D∗ is
measurable:

[D, o] 7→ P [[D, o;ZD] ∈ A] .

In addition, given a unimodular discrete space [D,o], such a map is also called
an equivariant process on D. In this case, one can also let Z(·) be undefined
for a class of discrete spaces, as long as it is defined for almost all realizations
of D. It is important that extra randomness be allowed here.

Convention 2.9. If D is clear from the context, ZD(·) is also denoted by Z(·)
for simplicity.

Note that in the above definition, D is deterministic and is not an equivalence
class of discrete spaces. However, for an equivariant process on [D,o], one can
define [D,o;ZD] as a random pointed marked discrete space with distribution
Q defined by

Q(A) :=

∫ ∫
1A[D, o;m]dPD(m)dµ([D, o]), (2.3)

where PD is the distribution of ZD (for every D) and µ is the distribution
of [D,o] (note that only the distribution of ZD is important and no common
probability space is assumed for different D’s). It can be seen that Q(A) is
indeed well defined and is a probability measure on D′∗.

The following basic examples help to illustrate the definition.

Example 2.10. By choosing the marks of points (or pairs of points) in an
i.i.d. manner, one obtains an equivariant process. Also, the following periodic
marking of Z is an equivariant process on Z: Choose U ∈ {0, 1, . . . , n − 1}
uniformly at random and let ZZ(x) := 1 if x ∈ nZ + U and ZZ(x) := 0
otherwise. Moreover, given a measurable function z : D∗∗ → Ξ, one can define
ZD(u, v) := z[D,u, v], which is called a deterministic process here.
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Lemma 2.11. Let [D,o] be a unimodular discrete space. If Z is an equivariant
process on D, then [D,o;ZD] is also unimodular.

The proof is straightforward and skipped for brevity. The converse of this
claim also holds (see the arXiv version). It is important here that the distribu-
tion of ZD does not depend on the origin (as in Definition 2.8).

Remark 2.12. One can easily extend the definition of equivariant processes
to allow the base space to be marked. Therefore, for point-stationary point
processes, one can replace condition (i) by invariance under translations only
(see Example 2.6). In particular, every stationary stochastic process on Zk
defines an equivariant process on Zk.

Definition 2.13. An equivariant subset S is the set of points with mark 1
in some {0, 1}-valued equivariant process. In addition, if [D,o] is a unimodular
discrete space, then the intensity of S in D is defined by ρD(S) := P [o ∈ SD].

For example, SD := {v ∈ D : #N1(v) = 4} defines an equivariant subset.
Also, let D = Z and SD be the set of even numbers with probability p and the
set of odd numbers with probability 1− p. Then, S is an equivariant subset of
Z if and only if p = 1

2 (notice Condition (i) of Definition 2.8).

Lemma 2.14. Let [D,o] be a unimodular discrete space and S an equivariant
subset. Then SD 6= ∅ with positive probability if and only if it has positive
intensity. Equivalently, SD = D a.s. if and only if ρD(S) = 1.

Proof. The claim is implied by the mass transport principle (2.2) for the function
g[D,u, v;S] := 1{v∈S}. The details are left to the reader.

The above lemma is a generalization of similar results in [6] and [2].

2.6 Notes and Bibliographical Comments

The mass transport principle is originally introduced in [19]. The concept of
unimodular graphs is first defined for deterministic transitive graphs in [9] and
developed to random rooted graphs and networks in [2].

Unimodular graphs have many analogies and connections to (Palm versions
of) stationary point processes and point-stationary point processes, as discussed
in Example 9.5 of [2] and also in [6] and [22]. As already explained in this section,
the framework of unimodular discrete spaces, introduced in this section, can be
regarded as a common generalization of these concepts.

Special cases of the notion of equivariant processes have been considered in
various literature. The first formulation in Subsection 2.5 is considered in [2] for
unimodular graphs. Factors of IID [25] are special cases of equivariant processes
where the marks of the points are obtained from i.i.d. marks (Example 2.10) in
an equivariant way. Covariant subsets and covariant partitions of unimodular
graphs are defined similarly in [6], but no extra randomness is allowed therein.
In the case of stationary (marked) point processes, the first formulation of Sub-
section 2.5 is used in the literature. However, the authors believe that the
general formulation of Definition 2.8 is new even in those special cases.
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3 The Unimodular Minkowski and Hausdorff Di-
mensions

This section presents the new notions of dimension for unimodular discrete
spaces. As mentioned in the introduction, the statistical homogeneity of uni-
modular discrete spaces is used to define discrete analogous of the Minkowski
and Hausdorff dimensions. Also, basic properties of these definitions are dis-
cussed.

3.1 The Unimodular Minkowski Dimension

Definition 3.1. Let [D,o] be a unimodular discrete space and r ≥ 0. An
equivariant r-covering R of D is an equivariant subset of D (Definition 2.13)
such that the set of balls {Nr(v) : v ∈ RD} cover D almost surely. Here, the
same symbol R is used for the following equivariant process (Definition 2.8):

R(v) := RD(v) :=

{
r, there is a ball centered at v in the covering,
0, otherwise,

for v ∈D. Let Cr be the set of all equivariant r-coverings. Define

λr := λr(D) := inf{intensity of R in D : R ∈ Cr}, (3.1)

where the intensity is defined in Definition 2.13.

Note that λr is non-increasing in terms of r. A smaller λr heuristically means
that a smaller number of balls per point is needed to cover D. So define

Definition 3.2. The upper and lower unimodular Minkowski dimen-
sions of D are defined by

udimM (D) := decay (λr),

udimM (D) := decay (λr),

as r → ∞. If the decay rate of λr exists, define the unimodular Minkowski
dimension of D by

udimM (D) := decay (λr) .

One has
0 ≤ udimM (D) ≤ udimM (D) ≤ ∞.

Remark 3.3. It is essential that extra randomness is allowed in the definition
of equivariant r-coverings (based on Definition 2.8). In general, one may have
to go beyond i.i.d. marks. See for instance Example 3.4 below.

The following are first illustrations of the definition.

Example 3.4. The randomly shifted lattice Sn := (2n + 1)Zk − Un, where
Un ∈ {−n, . . . , n}k is chosen uniformly, is an equivariant n-covering of Zk
equipped with the l∞ metric (other metrics can be treated similarly). This
implies that λn ≤ P [0 ∈ Sn] = (2n+ 1)−k, and hence, udimM (Zk) ≥ k.
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Example 3.5. If D is finite with positive probability, then it can be seen that
any non-empty equivariant subset has intensity at least E [1/#D] (use the mass
transport principle when sending mass 1/#D from every point of the subset to
every point of D). This implies that udimM (D) = 0.

Remark 3.6 (Bounding the Minkowski Dimension). In all examples in this
work, lower bounds on the unimodular Minkowski dimension are obtained by
constructing explicit examples of r-coverings. Upper bounds can be obtained
by constructing disjoint or bounded coverings, as discussed in Subsection 3.2
below, or by comparison with the unimodular Hausdorff dimension defined in
Subsection 3.3 below (see Theorem 3.22).

3.2 Optimal Coverings for the Minkowski Dimension

Definition 3.7. Let [D,o] be a unimodular discrete space and r ≥ 0. If the
infimum in the definition of λr (3.1) is attained by an equivariant r-covering S;
i.e., P [o ∈ SD] = λr, then S is called an optimal r-covering for D.

Theorem 3.8. Every unimodular discrete space has an optimal r-covering for
every r ≥ 0.

Sketch of the proof. Let S1,S2, . . . be a sequence of r-coverings of D such that
P [o ∈ Sn]→ λr. By a tightness argument and choosing a subsequence if neces-
sary, one may assume that [D,o;Sn] converges weakly, say to [D,o;S], where
S is an equivariant subset S of D (see the arXiv version for the details). Since
each Sn is an r-covering, P [Sn ∩Nr(o) = ∅] = 0. It is straightforward to deduce
P [S ∩Nr(o) = ∅] = 0. So by putting balls of radius r on the points of S, the
root is covered a.s. So Lemma 2.14 implies that every point is covered a.s.; i.e., S
is an r-covering. Also, by weak convergence, P [o ∈ S] = limn P [o ∈ Sn] = λr.
This implies that S is an optimal r-covering.

As a corollary, this implies that λr > 0 for every r since any non-empty
equivariant subset has positive intensity. In general, finding an optimal covering
is difficult. In some specific examples, the following is easier to study.

Definition 3.9. Let K <∞ and r ≥ 0. An r-covering of D is K-bounded if
each point ofD is covered at most K times a.s. A sequence (Rn)n of equivariant
coverings of D is called uniformly bounded if there is K <∞ such that each
Rn is K-bounded.

Lemma 3.10. If R is a K-bounded equivariant r-covering of D, then

1

K
P [R(o) 6= 0] ≤ λr ≤ P [R(o) 6= 0] . (3.2)

So if (Rn)n is a sequence of equivariant coverings which is uniformly bounded,
with Rn an n-covering for each n ≥ 1, then

udimM (D) = decay (P [Rn(o) 6= 0]),

udimM (D) = decay (P [Rn(o) 6= 0]).

12



Proof. The rightmost inequality in (3.2) is immediate from the definition of λr.
Let R′ be another equivariant r-covering. Let g(u, v) = 1 if R′(u) = R(v) = r
and d(u, v) ≤ r. Then g+(o) ≤ K1{R′(o)6=0} and g−(o) ≥ 1{R(o)6=0}. Hence

by the mass transport principle (2.2), 1
KP [R(o) 6= 0] ≤ P

[
R′(o) 6= 0

]
and the

leftmost inequality in (3.2) then follows from the definition of λr. The last two
equalities follow immediately from (3.2).

Corollary 3.11. If R is an equivariant disjoint r-covering of D (i.e., the
balls used in the covering are pairwise disjoint a.s.), then it is an optimal r-
covering for D.

Example 3.12. The covering of Zk (equipped with the l∞ metric) constructed
in Example 3.4 is a disjoint covering. So it is optimal and hence udimM (Zk) = k.
For Zk equipped with the Euclidean metric, one can construct a 3k-bounded
covering similarly and deduce the same result.

Example 3.13. Let Tk be the k-regular tree. Consider a deterministic covering
of Tk by disjoint balls of radius n. By choosing o in one of these balls uniformly
at random, it can be seen that an equivariant disjoint n-covering of [Tk,o] is
obtained (the proof is left to the reader). So Corollary 3.11 implies that λn =
1/#Nn (o) which has exponential decay when k ≥ 3. Hence, udimM (Tk) = ∞
for k ≥ 3.

Proposition 3.14. For any point-stationary point process Φ in R endowed with
the Euclidean metric, by letting p(r) := P [Φ ∩ (0, r) = ∅], one has

udimM (Φ) = decay

(
1

r

∫ r

0

p(s)ds

)
≤ 1 ∧ decay (p(r)) ,

udimM (Φ) = decay

(
1

r

∫ r

0

p(s)ds

)
≥ 1 ∧ decay (p(r)) .

Proof. Let r > 0 and ϕ be a discrete subset of R. Let U r be a random number
in [0, r) chosen uniformly. For each n ∈ Z, put a ball of radius r centered
at the largest element of ϕ ∩ [nr + U r, (n + 1)r + U r). Denote this random
r-covering of ϕ by Rϕ. One can see that R is equivariant under translations
(see Remark 2.12). This implies that R is an equivariant covering (verifying
Condition (ii) of Definition I.2.8 is skipped here). One has

P [0 ∈ RΦ] = P [Φ ∩ (0,U r) = ∅] =
1

r

∫ r

0

P [Φ ∩ (0, s) = ∅] ds.

Now, sinceR is a 3-bounded covering, Lemma 3.10 implies both equalities in the
claim. The rightmost inequalities hold for arbitrary deterministic nonnegative
non-decreasing functions and their proof is skipped.

3.3 The Unimodular Hausdorff Dimension

The definition of the unimodular Hausdorff dimension is based on coverings of
the discrete space by balls of possibly different radii. Such a covering can be
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represented by an assignment of marks to the points, where the mark of a point
v represents the radius of the ball centered at v. For reasons explained in the
introduction (Subsection 1.1), the radii are assumed to be at least 1. Also, by
convention, if there is no ball centered at v, the mark of v is defined to be 0.
In relation with this convention, the following notation is used for all discrete
spaces D and points v ∈ D:

Nr(v) :=

{
{u ∈ D : d(v, u) ≤ r}, r ≥ 1,
∅, r = 0.

In words, Nr(v) is the closed ball of radius r centered at v, except when r = 0.

Definition 3.15. Let [D,o] be a unimodular discrete space. An equivariant
(ball-) covering R of D is an equivariant process on D (Definition 2.8) with
values in Ξ := {0} ∪ [1,∞) such that the family of balls {NR(v)(v) : v ∈ D}
covers the points of D almost surely. For simplicity, NR(v)(v) will also be
denoted by NR(v). Also, for 0 ≤ α <∞ and 1 ≤M <∞, let

HαM (D) := inf {E [R(o)α] : R(v) ∈ {0} ∪ [M,∞), ∀v, a.s.} , (3.3)

where the infimum is over all equivariant coverings R such that almost surely,
∀v ∈D : R(v) ∈ {0} ∪ [M,∞), and, by convention, 00 := 0. Note that HαM (D)
is a non-decreasing function of both α and M .

Definition 3.16. Let [D,o] be a unimodular discrete space. The number
Hα1 (D), defined in (3.3), is called the α-dimensional Hausdorff content of
D. The unimodular Hausdorff dimension of D is defined by

udimH(D) := sup{α ≥ 0 : Hα1 (D) = 0}, (3.4)

with the convention that sup ∅ = 0.

The key point of assuming equivariance in the above definition is that by
Lemma 2.11, [D,o;R] is a unimodular marked discrete space. Note also that
extra randomness is allowed in the definition of equivariant coverings. Note also
that

0 ≤ Hα1 (D) ≤ 1,

since for the covering by balls of radii 1, one has E [R(o)α] = 1.
Examples 3.17 and 3.20 below provide basic illustrations of the unimodular

Hausdorff dimension.

Example 3.17. If D is finite with positive probability, then one can show
similarly to Example 3.5 that E [R(o)α] ≥ E [1/#D] for every R, and hence,
udimH(D) = 0. Also, for the covering Sn of Zk constructed in Example 3.4,
one has E [Sn(o)α] = (2n + 1)α−k. If α < k, this implies that Hα1 (Zk) = 0,
and hence, udimH(Zk) ≥ k. The upper bound udimH(Zk) ≤ k is implied by
Lemma 3.18 below. So udimH(Zk) = k.

14



Lemma 3.18. Let [D,o] be a unimodular discrete space and α ≥ 0. If there
exists c ≥ 0 such that ∀r ≥ 1 : #Nr(o) ≤ crα a.s., then udimH(D) ≤ α.

Proof. Let R be an arbitrary equivariant covering. For all discrete spaces D
and u, v ∈ D, let gD(u, v) be 1 if d(u, v) ≤ RD(u) and 0 otherwise. One has
g+(u) = #NR (u) and g−(u) ≥ 1 a.s. (sinceR is a covering). By the assumption
and the mass transport principle (2.2), one gets

E [R(o)α] ≥ 1

c
E [#NR (o)] =

1

c
E
[
g+(o)

]
=

1

c
E
[
g−(o)

]
≥ 1

c
.

Since R is arbitrary, one gets Hα1 (D) ≥ 1
c > 0, and hence, udimH(D) ≤ α.

Remark 3.19 (Bounding the Hausdorff Dimension). In most examples in this
work, a lower bound on the unimodular Hausdorff dimension is provided, either
by comparison with the Minkowski dimension (see Subsection 3.4 below), or by
explicit construction of a sequence of equivariant coverings R1,R2, . . . such that
E [Rn(o)α]→ 0 as n→∞. Note that this gives Hα1 (D) = 0, which implies that
udimH(D) ≥ α. Constructing coverings does not help to find upper bounds for
the Hausdorff dimension. The derivation of upper bounds is mainly discussed
in Part II. The main tools are the mass distribution principle (Theorem II.2.2),
which is a stronger form of Lemma 3.18 above, and the unimodular Billingsley’s
lemma (Theorem II.2.6).

Example 3.20. Let [D,o] be [Z, 0] with probability 1
2 and [Z2, 0] with proba-

bility 1
2 . It is shown below that udimM (D) = udimH(D) = 1.

For n ∈ N, the equivariant n-covering of Example 3.4 makes sense for D
and is uniformly bounded. One has P [R(0) > 0] = 1

2 (n−1 + n−2). This implies
that udimM (D) = decay

(
1
2 (n−1 + n−2)

)
= 1 and also udimH(D) ≥ 1. On the

other hand, for any equivariant covering S, one has

E [S(o)] ≥ E [S(o) |D = Z ]P [D = Z] =
1

2
E [S(o) |D = Z ] .

Let c > 2. The proof of Lemma 3.18 for [Z, 0] implies that E [S(o) |D = Z ] ≥ 1
c .

This implies that H1
1(D) ≥ 1

2c > 0. So udimH(D) ≤ 1.

Remark 3.21. In Example 3.20 above, different samples of D have different
natures heuristically. This is formalized by saying that [D,o] is non-ergodic; i.e.,
there is an event A ⊆ D∗ such that the proposition [D, o] ∈ A does not depend
on the origin of D and 0 < P [[D,o] ∈ A] < 1. The concept of ergodicity will be
discussed in [4]. In this work, the focus is mainly on the ergodic case. However
the definitions and results do not require ergodicity. In the non-ergodic cases,
like in Example 3.20, it is desirable to assign a dimension to every sample of D.
This will be formalized as sample dimension in [4].

3.4 Comparison of Hausdorff and Minkowski Dimensions

Theorem 3.22 (Minkowski vs Hausdorff). One has

udimM (D) ≤ udimM (D) ≤ udimH(D).
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Proof. The first inequality holds by the definition. For the second one, the
definition of λr (3.1) implies that for every α ≥ 0 and r ≥ 1,

inf{E [R(o)α] : R is an equivariant r-covering} = rαλr.

This readily implies that Hα1 (D) ≤ rαλr for every r ≥ 1. By the definition of
the Minkowski dimension, if α < udimM (D), one gets that Hα1 (D) = 0, and
hence, udimH(D) ≥ α. This implies the claim.

Remark 3.23. There exist examples in which the inequalities in Theorem 3.22
are strict (see e.g., Subsections 4.2.2 and 4.4). However, equality holds in
most of the examples that arise naturally. So, one can say that the equality
udimM (D) = udimH(D) expresses some kind of regularity for the unimodular
discrete space D, regarded as a fractal object.

3.5 The Unimodular Hausdorff Measure

Consider the setting of Subsection 3.3. For 0 ≤ α <∞, let

Hα∞(D) := lim
M→∞

HαM (D) ∈ [0,∞], (3.5)

where HαM (D) is defined in (3.3). Note that the limit exists because of mono-
tonicity.

Definition 3.24. The α-dimensional Hausdorff measure of D is

Mα(D) := (Hα∞(D))
−1
. (3.6)

Rather than being a measure in the mathematical sense, this is a quantifi-
cation of the size of D and can be used to compare unimodular spaces with
equal dimension. The following results gather some elementary properties of
the function HαM and the Hausdorff measure.

Lemma 3.25. One has

(i) Hα1 (D) ≤ HαM (D) ≤MαHα1 (D).

(ii) If Hα1 (D) = 0, then Hα∞(D) = 0; i.e., Mα(D) =∞.

(iii) If α ≥ β, then HαM (D) ≥Mα−βHβM (D).

Proof. (i). If R is an equivariant covering, them MR is also an equivariant
covering and satisfies ∀v ∈D : MR(v) ∈ {0} ∪ [M,∞) a.s.

(ii). The claim is implied by part (i).
(iii). If R is an equivariant covering such that ∀v ∈D : R(v) ∈ {0}∪ [M,∞)

a.s., then R(o)α ≥Mα−βR(o)β a.s.

Lemma 3.26. One has

∀α < udimH(D) : Mα(D) =∞,
∀α > udimH(D) : Mα(D) = 0.
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Proof. For α < udimH(D), one has Hα1 (D) = 0. So part (ii) of Lemma 3.25
implies that Mα(D) = ∞. For α > udimH(D), there exists β such that

α > β > udimH(D). For this β, one has Hβ1 (D) > 0 and part (iii) of the same

lemma implies that HαM (D) ≥ Mα−βHβM (D) ≥ Mα−βHβ1 (D). This implies
that Hα∞(D) =∞, which proves the claim.

Remark 3.27. For α := udimH(D), the α-dimensional Hausdorff measure
of D can be zero, finite or infinite. The lattice Zk is a case where Mα(D)
is positive and finite (Proposition 3.29 below). Examples II.3.11 and II.3.12
provide examples of the infinite and zero cases respectively.

The exact computation of the Hausdorff measure is generally difficult. The
following propositions provide basic examples.

Proposition 3.28 (0-dimensional Hausdorff Measure). One has

M0(D) = (E [1/#D])
−1
.

Proof. As in Example 3.17, one gets H0
M (D) ≥ E [1/#D]. It is enough to

show that equality holds. If D is finite a.s., this can be proved by putting a
single ball of radius M ∨ diam(D) centered at a point of D chosen uniformly
at random. Second, assume D is infinite a.s. It is enough to construct an
equivariant covering R such that P [R(o) > 0] is arbitrarily small. Let p > 0 be
arbitrary and S be the Bernoulli equivariant subset obtained by selecting each
point with probability p in an i.i.d. manner. For all infinite discrete spaces D
and v ∈ D, let τD(v) be the closest point of SD to v (if there is a tie, choose
one of them uniformly at random independently). It can be seen that τ−1

D (u) is
finite almost surely (use the mass transport principle for g(x, y) := 1{y=τD(x)}).
For u ∈ SD, let R(u) := 1∨diam(τ−1(u)) be the diameter of the Voronoi cell
of u. For u ∈ D \ SD, let R(u) := 0. It is clear that R is a covering, and in
fact, an equivariant covering. One has P [R(o) > 0] = P [o ∈ SD] = p, which is
arbitrarily small. So the claim is proved in this case.

Finally, assume D is finite with probability q. For all deterministic discrete
spaces D, let RD be one of the above coverings depending on whether D is finite
or infinite. It satisfies P [R(o) > 0] = E [1/#D] + p(1− q). Since p is arbitrary,
the claim is proved.

Proposition 3.29. The k-dimensional Hausdorff measure of the scaled lattice
[δZk, 0], equipped with the l∞ metric, is given by

Mk(δZk) = (2/δ)
k
.

Proof. Let Sn be the covering in Example 3.4 scaled by factor δ. One has
E
[
Sn(o)k

]
= (nδ)k/(2n+ 1)k. This easily implies that Hk∞(δZk) ≤ (δ/2)k. On

the other hand, the proof of Lemma 3.18 shows that Hk∞(δZk) ≥ cδk, where
c is any constant such that rk ≥ c#Nr(0) for large enough r. It follows that
Hk∞(δZk) ≥ (δ/2)k and the claim is proved.

17



3.6 The Effect of a Change of Metric

To avoid confusion when considering two metrics, a pointed discrete space is
denoted by ((D, d), o) here, where d is the metric on D and o is the origin. Note
that if d′ is another metric on D, then d′ ∈ RD×D. So d′ can be considered
as a marking of D in the sense of Definition 2.7 and ((D, d), o; d′) is a pointed
marked discrete space.

Definition 3.30. An equivariant (boundedly finite) metric is an R-valued
equivariant process d′ (Definition 2.8) such that, for all discrete spaces D, d′D
is almost surely (w.r.t. the extra randomness) a metric on D and (D,d′D) is a
boundedly-finite metric space.

If in addition, [(D,d),o] is a unimodular discrete space, then [(D,d),o;d′]
is a unimodular marked discrete space by Lemma 2.11. It can be seen that
[(D,d′),o;d], obtained by swapping the metrics, makes sense as a random
pointed marked discrete space (see the arXiv version for the measurability re-
quirement). By verifying the mass transport principle (2.2) directly, it is easy
to show that [(D,d′),o;d] is unimodular.

The following result is valid for both the Hausdorff and the (upper and lower)
Minkowski dimensions.

Theorem 3.31 (Change of Metric). Let [(D,d),o] be a unimodular discrete
space and d′ be an equivariant metric. If d′ ≤ cd+a a.s., with c and a constants,
then the dimension of (D,d′) is larger than or equal to that of (D,d). Moreover,
for every α ≥ 0, Mα(D,d′) ≥ c−αMα(D,d).

Proof. The claim is implied by the fact that the ball Nr((D,d
′), v) contains the

ball Ncr+a((D,d), v).

As a corollary, if 1
cd − a ≤ d′ ≤ cd + a a.s., then (D,d′) has the same

unimodular dimensions as (D,d). Also, cD has the same dimension as D and
Mα(cD) = c−αMα(D).

For instance, this result can be applied to Cayley graphs, which are an impor-
tant class of unimodular graphs [2]. It follows that the unimodular dimensions
of a Cayley graph do not depend on the generating set. In fact, it will be proved
in Subsection II.3.6 that these dimensions are equal to the polynomial growth
degree of H.

Example 3.32. Let [G,o] be a unimodular graph. Examples of equivariant
metrics on G are the graph-distance metric corresponding to an equivariant
spanning subgraph (e.g., the drainage network model of Subsection 4.5 below)
and metrics generated by equivariant edge lengths. More precisely, if l is an
equivariant process which assigns a positive weight to the edges of every deter-
ministic graph, then one can let d′(u, v) be the minimum weight of the paths
that connect u to v. If d′ is a metric for almost every realization of G and is
boundedly-finite a.s., then it is an equivariant metric.
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3.7 Dimension of Subspaces

Let [D,o] be a unimodular discrete space and S be an equivariant subset which
is almost surely nonempty. Lemma 2.14 implies that P [o ∈ SD] > 0. So one
can consider [SD,o] conditioned on o ∈ SD. By directly verifying the mass
transport principle (2.1), it is easy to see that [SD,o] conditioned on o ∈ SD
is unimodular (see the similar claim for unimodular graphs in [6]).

Convention 3.33. For an equivariant subset S as above, the unimodular Haus-
dorff dimension of [SD,o] (conditioned on o ∈ SD) is denoted by udimH(SD).
The same convention is used for the Minkowski dimension, the Hausdorff mea-
sure, etc.

Theorem 3.34. Let [D,o] be a unimodular discrete space and S an equivariant
subset such that SD is nonempty a.s. Then,

(i) One has

udimH(SD) = udimH(D),

udimM (SD) ≥ udimM (D),

udimM (SD) ≥ udimM (D).

(ii) If ρ is the intensity of S in D, then for every α ≥ 0, the α-dimensional
Hausdorff measure of SD satisfies

2−αρMα(D) ≤Mα(SD) ≤ ρMα(D).

Remark 3.35. Subsection 3.8.1 below defines a modification M′α(D) of the
unimodular Hausdorff measure by considering coverings by arbitrary sets. With
this definition, one would have M′α(Sd) = ρM′α(D). This can be proved
similarly to Theorem 3.34 with the modification that there is no need to double
the radii.

Remark 3.36. In the setting of Theorem 3.34, udimM (SD) can be strictly
larger than udimM (D) (see e.g., Subsection 4.4). Also, equality is guaranteed
if SD is a r-covering of D for some constant r.

Proof of Theorem 3.34. First, part (ii) is proved.
(ii). The definition of Hα∞(SD) implies that there exists a sequence Rn of

equivariant coverings of SD such that Rn(·) ∈ {0} ∪ [n,∞) for all n = 1, 2, . . .
and E [Rn(o)α |o ∈ SD ]→ Hα∞(SD). One may extend Rn to be defined on D
by letting Rn(v) := 0 for v ∈ D \ SD. Let ε > 0 be arbitrary and Bn ⊆ D
be the union of N(1+ε)Rn(v) for all v ∈ D. Define R′n(u) := (1 + ε)Rn(u) for
u ∈ Bn and R′n(u) := 1/ε for u 6∈ Bn. It is clear that R′n is an equivariant
covering of D. Also,

E
[
R′n(o)α

]
= (1 + ε)αE [Rn(o)α] +

1

εα
P [o 6∈ Bn]

= ρ(1 + ε)αE [Rn(o)α |o ∈ SD ] +
1

εα
P [o 6∈ Bn] . (3.7)
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Since the radii of the balls in Rn are at least n, one gets that Bn includes the
εn-neighborhood of SD. Therefore, P [o 6∈ Bn] ≤ P [Nεn(o) ∩ SD = ∅]. Since
SD is nonempty a.s., this in turn implies that P [o 6∈ Bn]→ 0 as n→∞ (note
that the events Nεn(o)∩SD = ∅ are nested and converge to the event SD = ∅).
So (3.7) implies that

lim inf
n→∞

E
[
R′n(o)α

]
= ρ(1 + ε)α lim inf

n→∞
E [Rn(o)α |o ∈ SD ] = ρ(1 + ε)αHα∞(SD).

Note that the radii of the balls inR′n are at least n∧(1/ε). Therefore, one obtains
Hα1/ε(D) ≤ ρ(1+ε)αHα∞(SD). By letting ε→ 0, one gets Hα∞(D) ≤ ρHα∞(SD);

i.e., Mα(SD) ≤ ρMα(D).
Conversely, let Rn be a sequence of equivariant coverings of D for n =

1, 2, . . . such that Rn(·) ∈ {0} ∪ [n,∞) a.s. and E [Rn(o)α] → Hα∞(D). Fix n
in the following. Let B := BD := {v : NRn(v) ∩ SD 6= ∅}. For each v ∈ B, let
τn(v) be an element chosen uniformly at random in NRn(v) ∩ SD. For v 6∈ B,
let τn(v) be undefined. For w ∈ SD, let R′n(w) := 2 max{Rn(v) : v ∈ τ−1

n (w)}.
It can be seen that R′n is an equivariant covering of SD. One has

E
[
R′n(o)α

]
≤ 2αE

[∑
v

Rn(v)α1{v∈τ−1
n (o)}

]

= 2αE

[∑
v

Rn(o)α1{o∈τ−1
n (v)}

]
≤ 2αE [Rn(o)α] , (3.8)

where the equality is by the mass transport principle. It follows that

ρ lim inf
n→∞

E
[
R′n(o)α |o ∈ SD

]
≤ 2αHα∞(D).

So ρHα∞(SD) ≤ 2αHα∞(D). Hence, Mα(SD) ≥ 2−αρMα(D) and the claim is
proved.

(i). The first claim is implied by part (ii) and Lemma 3.26. For the two
other claims, let R be an arbitrary equivariant r-covering of D. Similarly to
the above arguments, let τ (v) be an element picked at random in Nr(v) ∩ SD
and let R′ := {τ(v) : v ∈ D, Nr(v) ∩ SD 6= ∅}. Note that R′ is a 2r-covering
of SD. So (3.8) implies that for all α ≥ 0, ρλ2r(SD) ≤ 2αλr(D). The claims
follow when taking the log and letting r go to infinity.

3.8 Other Variants of the Definitions

3.8.1 Covering By Arbitrary Sets

According to Remark 3.35, it is more natural to redefine the Hausdorff measure
by considering coverings by subsets which are not necessarily balls (as in the
continuum setting). A technical challenge is to define such coverings in an
equivariant way. This will be done at the end of this subsection using the
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notion of equivariant processes of Subsection 2.5. Once an equivariant covering
C is defined, one can define the average diameter of sets U ∈ C per point by

E

[∑
U∈C

1

#U
1{o∈U}diam(U)

]
.

The same idea is used to redefine HαM (D) as follows:

H′α,M (D) := inf
C

{
E

[∑
U∈C

1

#U
1{o∈U}

(
M ∨ 1

2
diam(U)

)α]}
,

where the infimum is over all equivariant coverings C. Here, taking the maxi-
mum with M is similar to the condition that the subsets have diameter at least
2M (note for instance that a ball of radius M might have diameter strictly less
than 2M). Finally, define the modified unimodular Hausdorff measure
M′α(D) similarly to (3.6). Remark 3.35 shows an advantage of this definition.
Also, the reader can verify that 2−αHα2M (D) ≤ H′α,M (D) ≤ HαM (D). Therefore,

Mα(D) ≤M′α(D) ≤ 2αMα(D).

This implies that the notion of unimodular Hausdorff dimension is not changed
by this modification. One can also obtain a similar equivalent form of the uni-
modular Minkowski dimension. This is done by redefining λr by considering
equivariant coverings by sets of diameter at most 2r. The details are left to
the reader (see also the arXiv version). A similar idea will be used in Subsec-
tion 4.1.2 to calculate the Minkowski dimension of one-ended trees.

Finally, here is the promised representation of the above coverings as equiv-
ariant processes (it should be noted that such a covering cannot be defined as
a numbered sequence of equivariant subsets and the collection should be nec-
essarily unordered). To show the idea, consider a covering C = {U1, U2, . . .}
of a deterministic discrete space D, where each Ui is bounded. For each Ui,
assign the mark (Xi,diam(U)) to every point of Ui, where Xi ∈ [0, 1] is chosen
i.i.d. and uniformly. Note that multiple marks are assigned to every point and
the covering can be reconstructed from the marks. With this idea, let the mark
space Ξ be the set of discrete subsets of R2 (regard every discrete set as a count-
ing measure and equip Ξ with a metrization of the vague topology). This mark
space can be used to represent equivariant coverings by equivariant processes as
defined in Subsection 2.5 (for having a complete mark space, one can extend Ξ
to the set of discrete multi-sets in R2).

3.8.2 Gauge Functions and the Unimodular Dimension Function

There exist unimodular discrete spaces D in which the udimH(D)-dimensional
Hausdorff measure is either zero or infinity. For such spaces, it is convenient to
generalize the unimodular Hausdorff measure as follows. Consider an increas-
ing function ϕ : {0} ∪ [1,∞)→ [0,∞); e.g., ϕ(r) = rα, called a gauge function.
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Define HϕM (D) by infR{E [ϕ(R(o))]} similarly to (3.3). Then, define Mϕ(D)
similarly to (3.6). If 0 <Mϕ(D) <∞, then ϕ is called a unimodular dimen-
sion function for D. This generalization will be used in [4] for having stronger
form of the results about connections with scaling limits and some other results.

As an example, it is natural to guess that a dimension function for the zeros of
the simple random walk is ϕ(r) :=

√
r log log r (see Subsections 4.3 and II.3.3.1

for further discussion). Does there exist a unimodular discrete space without
any dimension function? The answer is not known yet. The answer to the
analogous question in the continuum setting is positive [16], but the proof ideas
don’t seem to work in the unimodular discrete setting.

In addition, given a family of gauge functions (ϕα)α≥0 that is increasing
in α and such that ∀α > β : limr→∞ ϕα(r)/ϕβ(r) = ∞, one can redefine
the unimodular Hausdorff dimension by sup{α : Mϕα(D) = 0} (see e.g., the
next paragraph). The reader can redefine the unimodular Minkowski dimension
similarly. Then, the results of this section can be extended to this setting
except that Theorem 3.34 and the results of Subsection 3.8.1 require the doubling
condition supr≥1 ϕ(2r)/ϕ(r) < ∞. The general result of Subsection 4.1.2 can
also be extended under the doubling condition. Also, the upper bounds in the
unimodular mass distribution principle, the unimodular Billingsley lemma and
the unimodular Frostman lemma in Part II hold in this more general setting
(some other results of Part II require the doubling condition). However, for the
ease of reading, the results are presented in the original setting of this section.

As an example of the above framework, one can define the exponential
dimension by considering ϕα(r) := eαr. It might be useful for studying uni-
modular spaces with super-polynomial growth, which are more interesting in
group theory (see Subsection II.3.6). Note that exponential gauge functions
do not satisfy the doubling condition, and hence, the reader should be careful
about using the results of this work for such gauge functions.

3.9 Notes and Bibliographical Comments

Several definitions and basic results of this section have analogues in the con-
tinuum setting. The following is a list of the analogies. Note however that
there is no systematic way of translating the results in the continuum setting to
unimodular discrete spaces. In particular, inequalities are most often, but not
always, in the other direction. The comparison of the unimodular Minkowski
and Hausdorff dimensions (Theorem 3.22) is analogous to the similar comparison
in the continuum setting (see e.g., (1.2.3) of [11]), but in the reverse direction.
Theorem 3.31 regarding changing the metric is analogous to the fact that the
ordinary Minkowski and Hausdorff dimensions are not increased by applying a
Lipschitz function. Theorem 3.34 regarding the dimension of subsets is anal-
ogous to the fact that the ordinary dimensions do not increase by passing to
subsets. Note however that equality holds in Theorem 3.34 for the unimodular
Hausdorff dimension (and also for the unimodular Minkowski dimension in most
usual examples) in contrast to the continuum setting.
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4 Examples

This section presents a large set of examples of unimodular discrete spaces to-
gether with discussions about their dimensions. Recall that the tools for bound-
ing the dimensions are summarized in Remarks 3.6 and 3.19. As mentioned in
Remark 3.19, bounding the Hausdorff dimension from above usually requires
the unimodular mass transport principle or the unimodular Billingsley lemma,
which will be stated in Part II. So the upper bounds for most of the following
examples are completed in Part II.

4.1 General Unimodular Trees

In this subsection, general results are presented regarding the dimension of uni-
modular trees with the graph-distance metric. Specific instances are presented
later in the section. It turns out that the number of ends of the tree plays an
important role (an end in a tree is an equivalence class of simple paths in the
tree, where two such paths are equivalent if their symmetric difference is finite).

It is well known that the number of ends in a unimodular tree belongs to
{0, 1, 2,∞} [2]. Unimodular trees without end are finite, and hence, are zero
dimensional (Example 3.17). The only point to mention is that there exists an
algorithm to construct an optimal n-covering for such trees. This algorithm is
similar to the algorithm for one-ended trees, discussed below, and is skipped
for brevity. In addition, It will be shown in Part II that unimodular trees with
infinitely many ends have exponential growth, and hence, have infinite Hausdorff
dimension. The remaining two cases are discussed below.

4.1.1 Unimodular Two-Ended Trees

If T is a tree with two ends, then there is a unique bi-infinite path in T called its
trunk. Moreover, each connected component of the complement of the trunk
is finite.

Theorem 4.1. For all unimodular two-ended trees [T ,o] endowed with the
graph-distance metric, one has udimM (T ) = udimH(T ) = 1. Moreover, if ρ
is the intensity of the trunk of T , then the modified 1-dimensional Hausdorff
measure of T is M′1(T ) = 2ρ−1.

Proof. For all two-ended trees T , let ST be the trunk of T . Then, S is an
equivariant subset (Definition 2.13). Therefore, Theorem 3.34 implies that
udimH(T ) = udimH(ST ). Since the trunk is isometric to Z as a metric space,
Example 3.17 implies that udimH(T ) = 1. In addition, Remark 3.35 and Propo-
sition 3.29 imply that M′1(T ) = ρ−1M′1(Z) = 2ρ−1.

The claim concerning the unimodular Minkowski dimension is implied by
Corollary II.2.9 of Part II, which shows that any unimodular infinite graph
satisfies udimM (G) ≥ 1 (this theorem will not be used throughout).
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4.1.2 Unimodular One-Ended Trees

Unimodular one-ended trees arise naturally in many examples (see [2]). In par-
ticular, the (local weak) limit of many interesting sequences of finite trees/graphs
are one-ended ([3, 2]). In terms of unimodular dimensions, it will be shown that
unimodular one-ended trees are the richest class of unimodular trees.

First, the following notation is borrowed from [6]. Every one-ended tree T
can be regarded as a family tree as follows. For every vertex v ∈ T , there is
a unique infinite simple path starting from v. Denote by F (v) the next vertex
in this path and call it the parent of v. By deleting F (v), the connected
component containing v is finite. This set is denoted by D(v) and its elements
are called the descendants of v. The maximum distance of v to its descendants
is called the height of v and is denoted by h(v).

Theorem 4.2. If [T ,o] is a unimodular one-ended tree endowed with the graph-
distance metric, then

udimM (T ) = 1 + decay (P [h(o) ≥ n]) , (4.1)

udimM (T ) = 1 + decay (P [h(o) ≥ n]) . (4.2)

In addition,

udimH(T ) ≥ decay (P [h(o) = n]) ≥ udimM (T ). (4.3)

It is not known whether (4.3) is sharp or not. It should also be noted that
decay (P [h(o) = n]) can be strictly larger than 1+decay (P [h(o) ≥ n]) (see e.g.,
Subsection 4.2.2), however, they are equal in most usual examples.

Lemma 4.3. For every unimodular one-ended tree [T ,o], the output of the
following greedy algorithm is an optimal equivariant n-covering of T .

while true do
Let A be the set of vertices which are not yet covered;
Let T ′ be the subtree spanned by A and the shortest paths connecting
the vertices in A;
Put balls of radii n at all vertices of height n in T ′;

end

It should be noted that A might be a disconnected subset of T in the above
algorithm. Note also that the algorithm does not finish in finite time, but for
each vertex v of T , it is determined in finite time whether a ball is put at v or
not. So the output of the algorithm is well defined.

The proof of Lemma 4.3 is omitted since it is similar to that of the next
lemma. The latter studies a variant of the algorithm which considers cover-
ings by cones rather than balls. Nevertheless, it will be shown below that the
Minkowski dimensions do not change.

The cone with height n at v ∈ T is defined by Cn(v) := Nn(v) ∩D(v); i.e.,
the first n generations of the descendants of v, including v itself. Let λ′n be the
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infimum intensity of equivariant coverings by cones of height n. The claim is
that

λ′2n ≤ λn ≤ λ′n. (4.4)

This immediately implies that

udimM (T ) = decay (λ′n) , udimM (T ) = decay (λ′n) . (4.5)

To prove (4.4), note that any covering by cones of height n is also a covering by
balls of radii n. This implies that λn ≤ λ′n. Also, if S is a covering by balls of
radii n, then {Fn(v) : v ∈ S} is a covering by cones of height 2n. By the mass
transport principle (2.2), one can show that the intensity of the latter is not
greater than the intensity of S. This implies that λ′2n ≤ λn. So (4.4) is proved.

Lemma 4.4. For every unimodular one-ended tree [T ,o], the output S of the
following greedy algorithm is an optimal equivariant covering of T by cones of
height n.

S := ∅;
while true do

Add all vertices of height n in T to S;
T := T \

⋃
v∈S D(v);

end

Proof. Let A be any equivariant covering of T by cones of height n. Consider
a realization (T ;A) of [T ;A]. Let v be a vertex such that h(v) = n. Since A is
a covering by cones of height n, A should have at least one vertex in D(v) (to
see this, consider the farthest leaf from v in D(v)). Now, for all such vertices
v, delete the vertices in A ∩ D(v) from A and then add v to A. Let A1 be
the subset of T obtained by doing this operation for all vertices v of height n.
So A1 is also a covering of T by cones of height n. Now, remove all vertices
{v : h(v) = n} and their descendants from T to obtain a new one-ended tree.
Consider the same procedure for the remaining tree and its intersection with A.
Inductively, one obtains a sequence of subsets A = A0, A1, . . . of T such that,
for each i, Ai is a covering of T by cones of height n and agrees with ST on the
set of vertices that are removed from the tree up to step i.

By letting [T ;A] be random, the above induction gives a sequence of equiv-
ariant subsets A = A0,A1, . . . on T . It can be seen that the intensity of A1 is
at most that of A (this can be verified by the mass transport principle (2.1)). It
is left to the reader to obtain inductively that P [o ∈ Ai+1] ≤ P [o ∈ Ai]. Also,
limi→∞Ai = S as equivariant subsets of T . This implies that P [o ∈ A] ≥
P [o ∈ S], hence, S is an optimal covering by cones of height n.

Lemma 4.5. Under the above setting, one has

P [h(o) mod (n+ 1) = −1] ≤ λ′n ≤ P
[
h(o) mod

⌊n
2

+1
⌋

= −1
]
. (4.6)

Proof. An equivariant covering will be constructed to prove the second inequal-
ity in (4.6). Let An := {v ∈ T : h(v) mod n = −1} and A′n := {Fn−1(v) : v ∈

25



An}. The claim is that A′n is a covering of T by cones of height 2n−2. Let v ∈ T
be an arbitrary vertex. Let k be such that (k − 1)n− 1 < h(v) ≤ kn− 1. Let j
be the first nonnegative integer such that h(F j(v)) ≥ kn−1 and let w := F j(v).
One has 0 ≤ j ≤ n− 1. By considering the longest path in D(w) from w to the
leaves, one finds z ∈ D(w) such that h(z) mod n = −1 and 0 ≤ d(w, z) ≤ n− 1.
Therefore w (and hence v) is a descendant of Fn−1(z). Also, d(w,Fn−1(z)) ≤
n − 1. It follows that d(v, Fn−1(z)) ≤ 2n − 2. So v is covered by the cone of
height 2n − 2 at Fn−1(z). Since Fn−1(z) ∈ A′n, it is proved that A′n gives a
(2n − 2)-covering by cones. It follows that λ′2n−2 ≤ P [o ∈ A′n] ≤ P [o ∈ An]
(where the last inequality can be verified by the mass transport principle (2.1)).
This implies the second inequality in (4.6).

To prove the first inequality in (4.6), let S be the optimal covering by cones
of height n given by the algorithm in Lemma 4.4. Send unit mass from each
vertex v ∈ S to the first vertex in v, F (v), . . . , Fn(v) which lies in An+1 (if there
is any). So the outgoing mass from v is at most 1{v∈S}. In the next paragraph,
it is proved that the incoming mass to each w ∈ An+1 is at least 1. This in turn
(by the mass transport principle) implies that P [o ∈ S] ≥ P [o ∈ An+1], which
proves the first inequality in (4.6).

The final step consists in proving that the incoming mass to each w ∈ An+1

is at least 1. If h(w) = n, then w ∈ S and the claim is proved. So assume
h(w) > n. By considering the longest path in D(w) from w, one can find a
vertex z such that w = Fn+1(z) and h(z) = h(w) − (n + 1). This implies that
no vertex in {F (z), . . . , Fn(z)} is in An+1. So to prove the claim, it suffices to
show that at least one of these vertices or w itself lies in S. Note that in the
algorithm in Lemma 4.4, at each step, the height of w decreases by a value at
least 1 and at most n+ 1 until w is removed from the tree. So in the last step
before w is removed, the height of w is in {0, 1, . . . , n}. This is possible only if
in the same step of the algorithm, an element of {F (z), . . . , Fn(z), w} is added
to S. This implies the claim and the lemma is proved.

Now, the tools needed to prove the main results are available.

Proof of Theorem 4.2. Lemma 4.5 and (4.5) imply that the upper and lower
Minkowski dimensions of T are exactly the upper and lower decay rates of
P [h(o) mod n = −1] respectively. So one should prove that these rates are equal
to the upper and lower decay rates of P [h(o) ≥ n] plus 1.

The first step consists in showing that P [h(o) = n] is non-increasing in n. To
see this, send unit mass from each vertex v to F (v) if h(v) = n and h(F (v)) = n+
1. Then the outgoing mass is at most 1{h(v)=n} and the incoming mass is at least
1{h(v)=n+1}. The result is then followed by the mass transport principle. This
monotonicity implies that n ·P [h(o) mod n = −1] ≥ P [h(o) ≥ n− 1] . Similarly,
by monotonicity,

n

2
P [h(o) mod n = −1] ≤ P

[
h(o) mod n ∈ {−1,−2, . . . ,−

⌈n
2

⌉
}
]

≤ P
[
h(o) ≥

⌊n
2

⌋]
.
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These inequalities conclude the proof of (4.1) and (4.2).
It remains to prove (4.3). The second inequality follows from (4.1) and the

fact that decay (P [h(o) = n]) ≥ decay (P [h(o) ≥ n]) + 1, which is not hard to
see. We now prove the first inequality. Fix 0 < ε < α < decay (P [h(o) = n]).
So there is a sequence n0 < n2 < · · · such that P [h(o) = ni] < n−αi for each i.
One may assume the sequence is such that ni ≥ 2i for each i. Now, for each
k ∈ N, consider the following covering of T :

Rk(v) :=

 2(ni − ni−1), if h(v) = ni and i > k,
2nk, if h(v) = nk,
0, otherwise.

.

By arguments similar to Lemma 4.5, it can be seen that Rk is indeed a covering.
It is claimed that E [Rk(o)α−ε] → 0 as k → ∞ If the claim is proved, then
udimH(T ) ≥ α− ε and the proof of (4.3) is concluded. Let c := 2α−ε. One has

E
[
Rk(o)α−ε

]
= cnα−εk P [h(o) = nk] + c

∞∑
i=k+1

(ni − ni−1)α−εP [h(o) = ni]

≤ cn−εk + c

∞∑
i=k+1

(ni − ni−1)α−εn−αi .

Therefore, it is enough to prove that

∞∑
i=1

(ni − ni−1)α−εn−αi <∞. (4.7)

It is easy to see that the maximum of the function (x − ni−1)α−εx−α over
x ≥ ni−1 happens at α

ε ni−1 and the maximum value is c′n−εi−1, where c′ =

(αε − 1)α−ε is a constant. So the left hand side of (4.7) is at most c′
∑∞
i=0 n

−ε
i ,

which is finite by the assumption ni ≥ 2i. So (4.7) is proved and the proof is
completed.

4.2 Instances of Unimodular Trees

This subsection discusses the dimension of some explicit unimodular trees. More
examples are given in Subsection 4.5 below, in Part II (e.g., the unimodular
Galton-Watson tree and the Poisson weighted infinite tree), and also in [4] (e.g.,
uniform spanning forests).

4.2.1 The Canopy Tree

The canopy tree Ck with offspring cardinality k [1] is constructed as follows. Its
vertex set is partitioned in levels L0, L1, . . .. Each vertex in level n is connected
to k vertices in level n− 1 (if n 6= 0) and one vertex (its parent) in level n+ 1.
Let o be a random vertex of Ck such that P [o ∈ Ln] is proportional to k−n.
Then, [Ck,o] is a unimodular random tree.
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Below, three types of metrics are considered on Ck. First, consider the
graph-distance metric. Given n ∈ N, let S := {v ∈ Ck : h(v) ≥ n}, where h(v)
is the height of v defined in Subsection 4.1.2. The set S gives an equivariant
n-covering and P [o ∈ S] is exponentially small as n → ∞. So udimM (Ck) =
udimH(Ck) =∞.

Second, for each n, let the length of each edge between Ln and Ln+1 be an,
where a > 1 is constant. Let d1 be the resulting metric on Ck. Given r > 0, let
S1 be the set of vertices having distance at least r/a to L0 (under d1). One can
show that S1 is an r-covering of (Ck, d1) and decay (P [o ∈ S1]) = log k/ log a.
Therefore, udimM (Ck, d1) ≥ log k/ log a. On the other hand, one can see that
the ball of radius an centered at o (under d1) has cardinality of order kn.
One can then use Lemma 3.18 to show that udimH(Ck, d1) ≤ log k/ log a. So
udimM (Ck, d1) = udimH(Ck, d1) = log k/ log a.

Third, replace an by n! in the second case and let d2 be the resulting metric.
Then, the cardinality of the ball of radius r centered at o has order less than rα

for every α > 0. One can use Lemma 3.18 again to show that udimH(Ck, d2) ≤
α. This implies that udimM (Ck, d2) = udimH(Ck, d2) = 0.

4.2.2 The Generalized Canopy Tree

This example generalizes the canopy tree of Subsection 4.2.1. The goal is to pro-
vide an example where the lower Minkowski dimension, the upper Minkowski
dimension and the Hausdorff dimension are all different when suitable parame-
ters are chosen.

Fix p0, p1, . . . > 0 such that
∑
pi = 1. Let U0,U1, . . . be an i.i.d. sequence

of random number in [0, 1] with the uniform distribution. For each n ≥ 0, let
Φn :=

(
1
pn

(Z+Un)
)
×{n}, which is a point process on the horizontal line y = n

in the plane. Let on := ( 1
pn
Un, n) ∈ Φn and Φ := ∪iΦi. Then, Φ is a point

process in the plane which is stationary under horizontal translations. Choose
m independent of the sequence (U i)i such that P [m = n] = pn for each n.
Then, let o := om.

Construct a graph T on Φ as follows: For each n, connect each x ∈ Φn to
its closest point (or closest point on its right) in Φn+1. Note that T is a forest
by definition. However, the next lemma shows that [T ,o] is a unimodular tree.

Definition 4.6. The generalized canopy tree with parameters p0, p1, . . . is
the unimodular tree [T ,o] constructed above.

Note that in the case where pn is proportional to k−n for k fixed, [T ,o] is
just the ordinary canopy tree Ck of Subsection 4.2.1. Also, one can generalize
the above construction by letting Φn be a sequence of point processes which are
(jointly) stationary under horizontal translations (see e.g., the arXiv version).

Lemma 4.7. One has

(i) [Φ,o], endowed with the Euclidean metric, is a unimodular discrete space.

(ii) T is a tree a.s. and [T ,o] is unimodular.
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Proof. For part (i), it is enough to show that Φ− o is a point-stationary point
process in the plane (see Example 2.6). This is skipped for brevity (see the arXiv
version). The main ingredients are using stationarity of Φ under horizontal
translations and the fact that Φn − on is point-stationary (the proof is similar
to that of the formula for the Palm version of the superposition of stationary
point processes, e.g., in [28].)

To prove (ii), note that T can be realized as an equivariant process on Φ (see
Definition 2.8 and Remark 2.12). Therefore, by Lemma 2.11 and Theorem 3.31,
it is enough to prove that T is connected a.s. Nevertheless, the same lemma
implies that the connected component T ′ of T containing o is a unimodular
tree. Since it is one-ended, Theorem 3.9 of [6] implies that the foils T ′ ∩Φi are
infinite a.s. By noting that the edges do not cross (as segments in the plane),
one obtains that T ′ ∩ Φi should be the whole Φi; hence, T ′ = T . Therefore, T
is connected a.s. and the claim is proved.

Proposition 4.8. The sequence (pn)n can be chosen such that

udimM (T ) < udimM (T ) < udimH(T ),

where T is endowed with the graph-distance metric. Moreover, for any 0 ≤ α ≤
β ≤ γ ≤ ∞, the sequence (pn)n can be chosen such that

udimM (T ) ≤ α, udimM (T ) = β, udimH(T ) ≥ γ.

For example, it is possible to have udimM (T ) = 0 and udimH(T ) = ∞
simultaneously.

Proof. T is a one-ended tree (see Subsection 4.1.2). Assume the sequence (pn)n
is non-increasing. So the construction implies that there is no leaf of the tree
in Φn for all n > 0. Therefore, for all n ≥ 0, the height of every vertex in Φn is
precisely n. So by letting qn :=

∑
i≥n pi, Theorem 4.2 implies that

udimH(T ) ≥ decay (pn) ,

udimM (T ) = 1 + decay (qn) ,

udimM (T ) = 1 + decay (qn) .

For simplicity, assume 0 < α and γ < ∞ (the other cases can be treated
similarly). Define n0, n1, . . . recursively as follows. Let n0 := 0. Given that ni
is defined, let ni+1 be large enough such that the line connecting points (ni, n

−β
i )

and (ni+1, n
−β
i+1) intersects the graph of the function x−α and has slope larger

than −n−γ . Now, let qni := n−βi for each i and define qn linearly in the interval
[ni, ni+1]. Let pn := qn − qn+1. It can be seen that pn is non-increasing,
decay (qn) ≤ α, decay (qn) = β and decay (pn) ≥ γ.
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4.2.3 Unimodular Eternal Galton-Watson Trees

Eternal Galton-Watson (EGW) trees are defined in [6]. Unimodular EGW trees
(in the nontrivial case) can be characterized as unimodular one-ended trees in
which the descendants of the root constitute a Galton-Watson tree. Also, the
latter Galton-Watson tree is necessarily critical. Here, the trivial case that each
vertex has exactly one offspring is excluded (where the corresponding EGW tree
is a bi-infinite path). In particular, the Poisson skeleton tree [3] is an eternal
Galton-Watson tree.

Recall that the offspring distribution of a Galton-Watson tree is the proba-
bility measure (p0, p1, . . .) on Z≥0 where pn is the probability that the root has
n offsprings.

Proposition 4.9. Let [T ,o] be a unimodular eternal Galton-Watson tree. If
the offspring distribution has finite variance, then udimM (T ) = 2.

Proof. By Kesten’s theorem [20] for the Galton-Watson tree formed by the
descendants of the root, limn nP [h(o) ≥ n] exists and is positive. It follows that
decay (P [h(o) ≥ n]) = 1. So the claim is implied by Theorem 4.2.

In fact, the same result holds for the Hausdorff dimension of T , which will
be proved in Theorem II.3.7.

Conjecture 4.10. If the offspring distribution is in the domain of attraction
of an α-stable distribution, where α ∈ [1, 2], then

udimM (T ) = udimH(T ) =
α

α− 1
.

4.3 Examples Associated with Random Walks

Let µ be a probability measure on Rk. Consider the simple random walk
(Sn)n∈Z, where S0 = 0 and the jumps Sn − Sn−1 are i.i.d. with distribution
µ. In this subsection, unimodular discrete spaces are constructed based on the
image and the zero set of this random walk and their dimensions are studied
in some special cases. The graph of the simple random walk will be studied in
Subsection II.3.3.2.

4.3.1 The Image of the Simple Random Walk

Assume the random walk is transient; i.e., visits every given ball only finitely
many times. It follows that the image Φ = {Sn}n∈Z is a random discrete subset
of Rk. If no point is visited more than once a.s. (as in the following theorem),
then it can be seen that Φ is a point-stationary point process, hence, [Φ, 0] is
a unimodular discrete space. In the general case, by similar arguments, one
should bias the distribution of [Φ, 0] by the inverse of the multiplicity of the
origin; i.e., by 1/#{n : Sn = 0}, to obtain a unimodular discrete space. This
claim can be proved by direct verification of the mass transport principle.
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Proposition 4.11. Let Φ := {Sn}n∈Z be the image of a simple random walk S
in R, where S0 := 0. Assume the jumps Sn − Sn−1 are positive a.s.

(i) udimM (Φ)= decay
(
E
[
S11{S1≤r}

])
≥ 1 ∧ decay (P [S1 > r]).

(ii) udimM (Φ)= decay
(
E
[
S11{S1≤r}

])
≤ 1 ∧ decay (P [S1 > r]).

(iii) If β := decay (P [S1 > r]) exists, then udimM (Φ) = 1 ∧ β.

In fact, the same claims are valid for the Hausdorff dimension as well. This
will be shown in Theorem II.3.9.

Proof. For every r > 0, one has P [Φ ∩ (0, r) = ∅] = P [S1 ≥ r]. So the claims
are direct consequences of Proposition 3.14.

The image of the nearest-neighbor simple random walk in Zk will be studied
in [4]. It will be shown that it has dimension 2 when k ≥ 2. Furthermore, a
doubling property will be proved in this case.

As another example, if [T ,o] is any unimodular tree such that the simple
random walk on T is transient a.s., then the image of the (two sided) simple
random walk on T is another unimodular tree (after biasing by the inverse of
the multiplicity of the root). The new tree is two-ended a.s., and hence, is
1-dimensional by Theorem 4.1.

4.3.2 Zeros of the Simple Random Walk

Proposition 4.12. Let Ψ be the zero set of the symmetric simple random walk
on Z with uniform jumps in {±1}. Then, udimM (Ψ) = 1

2 .

In fact, the same result holds for the Hausdorff dimension of Ψ, which will
be proved in Proposition II.3.10.

Proof. Represent Ψ uniquely as Ψ := {Sn : n ∈ Z} such that S0 := 0 and
Sn < Sn+1 for each n. Then, (Sn)n is another simple random walk and Ψ is its
image. The distribution of the jump S1 is explicitly computed in the classical
literature on random walks (using the reflection principle). In particular, there

exist c1, c2 > 0 such that c1r
− 1

2 < P [S1 > r] < c2r
− 1

2 for every r ≥ 1. Therefore,
the claim is implied by Proposition 4.11.

4.4 A Subspace with Larger Minkowski Dimension

Let Φ ⊆ R be an arbitrary point-stationary point process and 0 < α < 1. Let S1

be the first point of Φ on the right of the origin. Assume β := decay (P [S1 > r])
exists (e.g., the case in Theorem 4.11) and α < β < 1. Then, Proposition 3.14
gives that udimM (Φ) = β.

Consider the intervals divided by consecutive points of Φ. In each such inter-
val, namely (a, b), add d(b− a)αe − 1 points to split the interval into d(b− a)αe
equal parts. Let Φ′ denote the resulting point process. By the assumption

31



α < β, one can show that E [Sα1 ] < ∞. Now, by biasing the distribution of
Φ′ by dSα1 e and changing the origin to a point of Φ′ ∩ [0, S1) chosen uniformly
at random, one obtains a point-stationary point process Ψ (see Theorem 5 in
[22] and also the examples in [2]). The distribution of Ψ is determined by the
following equation (where h is any measurable nonnegative function).

E [h(Ψ)] =
1

E [dSα1 e]
E

 ∑
x∈Φ′∩[0,S1)

h(Φ′ − x)

 . (4.8)

Proposition 4.13. Let Φ and Ψ be as above. Then, Φ has the same distribution
as an equivariant subspace of Ψ (conditioned on having the root) and

udimM (Φ) = β >
β − α
1− α

= udimM (Ψ).

Before presenting the proof, note that Theorem 3.34 implies that udimH(Φ) =
udimH(Ψ). Therefore, the proposition implies udimM (Ψ) < udimH(Ψ).

Proof. Let A be the set of newly-added points in Ψ, which can be defined by
adding marks from the beginning and is an equivariant subset of Ψ. By (4.8),
one can verify that Ψ \A conditioned on 0 6∈ A has the same distribution as Φ
(see also Proposition 6 in [22]). Also, by letting c := E [dSα1 e], (4.8) gives

P [Ψ ∩ (0, r) = 0] =
1

c
E

 ∑
x∈Φ′∩[0,S1)

1{(Φ′−x)∩(0,r)=∅}


=

1

c
E
[
dSα1 e 1{Φ′∩(0,r)=∅}

]
=

1

c
E
[
dSα1 e 1{S1/dSα1 e>r}

]
.

One can easily deduce that decay (P [Ψ ∩ (0, r) = 0]) = (β − α)/(1− α). There-
fore, Proposition 3.14 gives the claim.

4.5 A Drainage Network Model

Practical observations show that large river basins have a fractal structure. For
example, [18] discovered a power law relating the area and the height of river
basins. There are various ways to model river basins and their fractal properties
in the literature. In particular, [27] formalizes and proves a power law with
exponent 3/2 for a specific model called Howard’s model. Below, the simpler
model of [26] is studied. One can ask similar questions for Howard’s model or
other drainage network models.

Connect each (x, y) in the even lattice {(x, y) ∈ Z2 : x + y mod 2 = 0} to
either (x− 1, y − 1) or (x+ 1, y − 1) with equal probability in an i.i.d. manner
to obtain a directed graph T . Note that the downward path starting at a given
vertex is the rotated graph of a simple random walk. It is known that T is
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connected and is a one-ended tree (see e.g., [27]). Also, by Lemma 2.11, [T , 0]
is unimodular.

Note that by considering the Euclidean metric on T , the Hausdorff dimension
of T is 2. In the following, the graph-distance metric is considered on T .

Proposition 4.14. Under the graph-distance metric, one has udimM (T ) = 3
2 .

Before presenting the proof, it is worthwhile mentioning that the same re-
sult is valid for the Hausdorff dimension of T , which will be proved in Theo-
rem II.3.14.

Proof. The idea is to use Theorem 4.2. Following [27], there are two backward
paths (going upward) in the odd lattice that surround the descendants D(o)
of the origin. These two paths have exactly the same distribution as (rotated)
graphs of independent simple random walks starting at (−1, 0) and (1, 0), re-
spectively, until they hit for the first time. In this setting, h(o) is exactly the
hitting time of these random walks. So classical results on random walks imply
that P [h(o) ≥ n] is bounded between two constant multiples of n−

1
2 for all n.

So Theorem 4.2 implies that udimM (T ) = 3
2 .

4.6 Self Similar Unimodular Discrete Spaces

This section provides a class of examples of unimodular discrete spaces obtained
by discretizing self-similar sets. Let l ≥ 1 and f1, . . . , fl be similitudes of Rk
with similarity ratios r1, . . . , rl respectively (i.e., ∀x, y ∈ Rk : |fi(x)− fi(y)| =
ri |x− y|). For every n ≥ 0 and every string σ = (j1, . . . , jn) ∈ {1, . . . , l}n,
let fσ := fj1 · · · fjn . Also let |σ| := n. Fix a point o ∈ Rk (one can similarly
start with a finite subset of Rk instead of a single point). Let K0 := {o} and
Kn+1 :=

⋃
j fj(Kn) for each n ≥ 0. Equivalently,

Kn = {fσ(o) : |σ| = n}. (4.9)

Recall that if ri < 1 for all i, then by contraction arguments, Kn converges in
the Hausdorff metric to the attractor of f1, . . . , fl (see e.g., Section 2.1 of [11]).
The attractor is the unique compact set K ⊆ Rk such that K =

⋃
i fi(K).

In addition, if the fi’s satisfy the open set condition; i.e., there is a bounded
open set V ⊆ Rk such that fi(V ) ⊆ V and fi(V ) ∩ fj(V ) = ∅ for each i, j,
then the Minkowski and Hausdorff dimensions of K are equal to the similarity
dimension, which is the unique α ≥ 0 such that

∑
rαi =1.

The following is the main result of this section. It introduces a discrete
analogue of self-similar sets by scaling the sets Kn and taking local weak limits.

Theorem 4.15. Let on be a point of Kn chosen uniformly at random, where
Kn is defined in (4.9). Assume that ri = r < 1 for all i and the open set
condition is satisfied. Then,

(i) [r−nKn,on] converges weakly to some unimodular discrete space.
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(ii) The unimodular Minkowski and Hausdorff dimension of the limiting space
are equal to α := log l/|log r|. Moreover, it has positive and finite α-
dimensional Hausdorff measure.

The proof is given at the end of this subsection. In fact, a point process Ψ
in Rk will be constructed such that [r−nKn,on] converges weakly to [Ψ, o]. In
addition, Ψ − o is point-stationary. It can also be constructed directly by the
algorithm in Remark 4.22 below.

Definition 4.16. The unimodular discrete space in Theorem 4.15 is called a
self similar unimodular discrete space.

It should be noted that self similar unimodular discrete spaces depend on
the choice of the initial point o in general.

The following are examples of unimodular self similar discrete spaces. The
reader is also invited to construct a unimodular discrete version of the Sierpinski
carpet similarly.

Example 4.17. If f1(x) := x/2 and f2(x) := (1 +x)/2, then the limiting space
is just Z. Similarly, the lattice Zk and the triangular lattice in the plane are
self similar unimodular discrete spaces.

Example 4.18 (Unimodular Discrete Cantor Set). Start with two points K0 :=
{0, 1}. Let f1(x) := x/3 and f2(x) := (2 + x)/3. Then, Kn is the set of the
interval ends in the n-th step of the definition of the Cantor set. Here, it is
easy to see that the random set Ψn := 3n(Kn − on) ⊆ Z converges weakly to
the random set Ψ ⊆ Z defined as follows: Ψ := ∪nT n, where T n is defined
by letting T 0 := {0,±1} and T n+1 := T n ∪ (T n ± 2 × 3n), where the sign is
chosen i.i.d., each sign with probability 1/2. Note that each T n has the same
distribution as Ψn, but the sequence T n is nested. In addition, since on is chosen
uniformly, Ψn and Ψ are point-stationary point processes, and hence [Ψ, 0] is
unimodular (a deterministic discrete Cantor set exists in the literature which
is not unimodular). Theorem 4.15 implies that udimM (Ψ) = udimH(Ψ) =
log 2/log 3.

Example 4.19 (Unimodular Discrete Koch Snowflake). Let Cn be the set of
points in the n-th step of the construction of the Koch snowflake. Let xn be a
random point of Cn chosen uniformly and Φn := 3n(Cn − xn). It can be seen
that Φn tends weakly to a random discrete subset Φ of the triangular lattice
which is almost surely a bi-infinite path (note that the cycle disappears in the
limit). It can be seen that Φ can be obtained by Theorem 4.15. In this paper,
Φ is called the unimodular discrete Koch snowflake. Also, Theorem 4.15
implies that udimM (Φ) = udimH(Φ) = log 4/log 3.
In addition, Φ can be constructed explicitly as Φ := ∪nT n, where T n is a
random finite path in the triangular lattice with distinguished end pointsAn and
Bn defined inductively as follows: Let T 1 := {A1,B1}, where A1 is the origin
and B1 is a neighbor of the origin in the triangular lattice chosen uniformly
at random. For each n ≥ 1, given (T n,An,Bn), let (T n+1,An+1,Bn+1) be
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Figure 1: Four ways to attach 3 isometric copies to T n in the construction of the
unimodular discrete Koch snowflake, where each copy is a rotated/translated
version of T n (relative to An and Bn). Here, T n is shown in black.

obtained by attaching to T n three isometric copies of itself as shown in Figure 1.
There are 4 ways to attach the copies and one of them should be chosen at
random with equal probability (the copies should be attached to T n relative to
the position of An and Bn). It can be seen that no points overlap.

Remark 4.20. If the ri’s are not all equal, the guess is that there is no scaling
of the sequence [Kn,on] that converges to a nontrivial unimodular discrete space
(which is not a single point). This has been verified by the authors in the case
o ∈ V . In this case, by letting an be the distance of on to its closest point in Kn,
it is shown that for any ε > 0, P [an/(r̄)

n < ε] → 1
2 and P

[
an/(r̄)

n > 1
ε

]
→ 1

2 ,
where r̄ is the geometric mean of r1, . . . , rl. This implies the claim (note that
the counting measure matters for convergence; e.g., {0, 1

n} does not converge to
{0}).

To prove Theorem 4.15, it is useful to consider the following nested version of
the sets Kn (note that Kn is not necessarily contained in Kn+1, unless o is a fixed
point of some fi). Let u1,u2, . . . be i.i.d. uniform random numbers in {1, . . . , l}
and δn := (un, . . . ,u1). Let o′n := fδn(o). Let K̂n := f−1

δn
Kn = f−1

u1
· · · f−1

unKn.

The chosen order of the indices in δn ensures that K̂n ⊆ K̂n+1 for all n. It is
easy to see that [K̂n, o] has the same distribution as [r−nKn,o

′
n]. For v ∈ K̂n,

let
wn(v) := #{σ : |σ| = n, fσ(o) = fδn(v)}.

One has wn(v) ≤ wn+1(v). Note that in the case o ∈ V , wn(·) = 1 and the
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arguments are much simpler. The reader can assume this at first reading.
In the following, for x ∈ Rk, Br(x) represents the closed ball of radius r

centered at x in Rk.

Lemma 4.21. Let K̂ := ∪nK̂n and w(v) := limnwn(v) for v ∈ K̂.

(i) w(·) is uniformly bounded.

(ii) Almost surely, K̂ is a discrete set.

(iii) The distribution of [K̂, o], biased by 1/w(o), is the limiting distribution
alluded to in Theorem 4.15.

Proof. (i). Assume fσ1(o) = · · · = fσk(o) and |σj | = n for each j ≤ k. Let
D be a fixed number such that V intersects BD(o). Now, the sets fσj (V ) for
1 ≤ j ≤ k are disjoint and intersect a common ball of radius Drn. Moreover,
each of them contains a ball of radius arn and each is contained in a ball of
radius brn (for some fixed a, b > 0). Therefore, Lemma 2.2.5 of [11] implies that
k ≤ (D+2b

a )k =: C. This implies that wn(·) ≤ C a.s., hence w(·) ≤ C a.s.

(ii). Let D be arbitrary as in the previous part. Assume f−1
δn
fσj(o) ∈ BD(o)

for j = 1, . . . , k. Now, for j = 1, . . . , k, the sets fσj (V ) are disjoint and intersect
a common ball of radius 2Drn. As in the previous part, one obtains k ≤
( 2D+2b

a )k. Therefore, #ND(o) ≤ ( 2D+2b
a )k a.s. Since this holds for all large

enough D, one obtains that K̂ is a discrete set a.s.
(iii). Note that the distribution of o′n is just the distribution of on biased

by the multiplicities of the points in Kn. It follows that biasing the distribution
of [K̂n, o] by 1/wn(o) gives just the distribution of [r−nKn,on]. The latter is

unimodular since on is uniform in Kn. So the distribution of [K̂, o] biased by
1/w(o) is also unimodular and satisfies the claim of Theorem 4.15.

Proof of Theorem 4.15. Convergence is proved in Lemma 4.21. The rest of the
proof is base on the construction of a sequence of equivariant coverings of K̂. In
this proof, with an abuse of notation, the dimension of K̂ means the dimension
of the unimodular space obtained by biasing the distribution of K̂ by 1/w(o)
(see Lemma 4.21). Let D > diam(K) be given, where K is the attractor of
f1, . . . , fl. Let m > 0 be large enough so that diam(Km) < D. Note that

each element in K̂ can be written as f−1
δn
fσ(o) for some n and some string σ

of length n. Let γm be a string of length m chosen uniformly at random and
independently of other variables. For an arbitrary n and a string σ of length n,
let

Uσ := f−1
δn+m

fσ(Km),

zσ := f−1
δn+m

fσfγm(o).

Note that Uσ ⊆ K̂ is always a scaling of Km with ratio r−m and zσ ∈ Uσ.
Now, define the following covering of K̂:

Rm(v) :=

{
Dr−m, if v = zσ for some σ,
0, otherwise.
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It can be seen thatRm gives an equivariant covering. Also, note thatRm(o) > 0
if and only if fσfγm(o) = fδn+m(o) for some n and some string σ of length n. Let
An,m(o) be the set of possible outcomes for γm such that there exists a string
σ of length n such that the last equation holds. One can see that this set is
increasing with n and deduce that wm(o) ≤ #An,m(o) ≤ wn+m(o). By letting
w′m(o) := # ∪n An,m(o), it follows that wm(o) ≤ w′m(o) ≤ w(o). According to
the above discussion, Rm(o) > 0 if and only if γm ∈ ∪nAn,m(o). So

P [Rm(o) > 0 |u0,u1, . . . ] = w′m(o)rmα.

Therefore, by considering the biasing that makes K̂ unimodular, one gets

E
[

1

w(o)
1{Rm(o)>0}

]
= E

[
w′m(o)rmα

w(o)

]
≤ rmα. (4.10)

Since the balls in the covering have radius Dr−m, one gets udimM (K̂) ≥ α.
On the other hand, by (4.10) and monotone convergence, one finds that

E
[

1

w(o)
1{Rm(o)>0}

]
≥ 1

2
rmα,

for large enough m. Similar to the proof of part (i) of Lemma 4.21, one
can show that the sequence of coverings Rm (for m = 1, 2, . . .) is uniformly

bounded. Therefore, Lemma 3.10 implies that udimM (K̂) = α. Moreover,

since E [Rm(o)α/w(o)] is bounded (by Dα), one can get that Mα(K̂) > 0.
Lemma 3.18 will be used to bound the Hausdorff dimension. Let D > 1

be arbitrary. Choose m such that r−m ≤ D < r−m−1. By Lemma 4.21,
there are finitely many points in K̂ ∩ BD(o). Therefore, one finds n such that

K̂ ∩ BD(o) = K̂n+m ∩ BD(o). It follows that the sets {Uσ : |σ| = n} cover

K̂n+m. Now, assume σ1, . . . , σk are strings of length n such thatUσi are distinct
and intersects BD(o). One obtains that

#BD(o) ∩ K̂ ≤
k∑
j=1

#BD(o) ∩Uσj ≤ klm = kr−αm ≤ kDα. (4.11)

Consider the sets V σj := f−1
δn+m

fσj (V ) which are disjoint (since σj ’s have the

same length). Note that if ε > diam(V ∪ {o}) is fixed, then the ε-neighborhood
of V contains Km. Therefore, all V σj ’s intersect a common ball of radius
D+ εr−m ≤ (1 + ε)D. Moreover, each of them contains a ball of radius ar−m ≥
arD and is contained in a ball of radius br−m ≤ bD (for some a, b > 0 not

depending on D). Therefore, Lemma 2.2.5 of [11] implies that k ≤ ( (1+ε)+2b
ar )k.

Therefore, (4.11) implies that

#BD(o) ∩ K̂ ≤ CDα, a.s.

Therefore, Lemma 3.18 implies that udimH(K̂) ≤ α. Moreover, the proof of

the lemma shows that Mα(K̂) <∞. This completes the proof.
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Remark 4.22. Motivated by Examples 4.18 and 4.19, it can be seen that
every unimodular self similar discrete space can be constructed by successively
attaching copies of a set to itself. This is expressed in the following algorithm.

K̂0 := {o};
Let g0 be the identity map;
Choose i.i.d. random numbers i1, i2, . . . uniformly in {1, . . . , l};
for n = 1, 2, . . . do

let K̂n consist of l isometric copies of K̂n−1 as follows

K̂n :=

l⋃
j=1

gn−1f
−1
in
fjg
−1
n−1(K̂n−1);

Let gn := gn−1f
−1
in

;

end

4.7 Notes and Bibliographical Comments

Some of the examples in this section, listed below, are motivated by analogous
examples in the continuum setting. In fact, the unimodular dimensions of these
examples are equal to the ordinary dimensions of the analogous continuum ex-
amples. This connection will be discussed further in [4] via scaling limits.

Theorem 4.9 and Conjecture 4.10 regarding the EGW are inspired by the di-
mension of the Brownian continuum random tree and stable trees respectively
(see Theorem 5.5 of [15]), which are scaling limits of Galton-Watson trees con-
ditioned to be large. The zero set of the simple random walk (Theorem 4.12) is
analogous to the zero set of Brownian motion. Self-similar unimodular discrete
spaces are inspired by continuum self-similar sets (see e.g., Section 2.1 of [11])
as discussed in Subsection 4.6.
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